This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A060536 Number of homeomorphically irreducible multigraphs (or series-reduced multigraphs or multigraphs without nodes of degree 2) on 6 labeled nodes. 0
 1, 15, 45, 90, 495, 1866, 5990, 19920, 62655, 186525, 526470, 1403265, 3530000, 8388495, 18884475, 40442635, 82775970, 162663240, 308201500, 565176105, 1006419120, 1745321275, 2955037455, 4895398755, 7950135835, 12677752431 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983. LINKS FORMULA G.f.: - (6*x^25 - 30*x^24 + 60*x^23 + 615*x^22 - 9280*x^21 + 54909*x^20 - 186150*x^19 + 404285*x^18 - 581340*x^17 + 522915*x^16 - 172878*x^15 - 289605*x^14 + 590880*x^13 - 581955*x^12 + 337755*x^11 - 67650*x^10 - 74150*x^9 + 84315*x^8 - 42870*x^7 + 10410*x^6 + 888*x^5 - 1590*x^4 + 535*x^3 - 75*x^2 + 1)/(x - 1)^15. E.g.f. for homeomorphically irreducible multigraphs with n nodes and k edges is (1 + x*y)^( - 1/2)*exp(x*y/2 + x^2*y^2/4)*Sum_{k >= 0} 1/(1 - x)^binomial(k, 2)*exp( - x^2*y*k^2/(2*(1 + x*y)) - x^2*y*k/2)*y^k/k!. CROSSREFS Cf. A003514, A060516, A060533-A060537. Sequence in context: A164788 A033849 A194715 * A014634 A303857 A278337 Adjacent sequences:  A060533 A060534 A060535 * A060537 A060538 A060539 KEYWORD easy,nonn AUTHOR Vladeta Jovovic, Apr 01 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 17:03 EST 2019. Contains 330000 sequences. (Running on oeis4.)