OFFSET
0,5
COMMENTS
The inverse binomial transform of a(n) is A194590(n).
LINKS
Peter Luschny, The lost Catalan numbers.
FORMULA
a(n) = sum_{k=0..n} C(n,k)*A194590(k).
a(n) = (n mod 2)+(1/2)*sum_{k=1..n} (-1)^k*C(n,k)*(k+1)$*((k+1)/2)^(k mod 2). Here n$ denotes the swinging factorial A056040(n).
a(n) = PSUMSIGN([0,0,1,2,6,16,45,..] = PSUMSIGN([0,0,A005717]) where PSUMSIGN is from Sloane's "Transformations of integer sequences". - Peter Luschny, Jan 17 2012
A(x) = B'(x)*(1/x^2-1/(B(x)*x)), where B(x)/x is g.f. of A005043. - Vladimir Kruchinin, Sep 28 2015
a(n) = Sum_{k=0..n/2} C(n+2,k)*C(n-k,k). - Vladimir Kruchinin, Sep 28 2015
a(n) = hypergeom([1-n/2,-n,3/2-n/2],[1,2-n],4) for n>=3. - Peter Luschny, Mar 07 2017
a(n) ~ 3^(n + 1/2) / (8*sqrt(Pi*n)). - Vaclav Kotesovec, Feb 17 2024
MAPLE
# First method, describes the derivation:
A056040 := n -> n!/iquo(n, 2)!^2:
# Second method, more efficient:
A194589 := proc(n) local k;
(n mod 2)+(1/2)*add((-1)^k*binomial(n, k)*A100071(k+1), k=1..n) end:
# Alternatively:
a := n -> `if`(n<3, iquo(n, 2), hypergeom([1-n/2, -n, 3/2-n/2], [1, 2-n], 4)): seq(simplify(a(n)), n=0..30); # Peter Luschny, Mar 07 2017
MATHEMATICA
sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; a[n_] := Mod[n, 2] + (1/2)*Sum[(-1)^k*Binomial[n, k]*2^-Mod[k, 2]*(k+1)^Mod[k, 2]*sf[k+1], {k, 1, n}]; Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Jul 30 2013, from 2nd method *)
Table[If[n < 3, Quotient[n, 2], HypergeometricPFQ[{1 - n/2, -n, 3/2 - n/2}, {1, 2-n}, 4]], {n, 0, 30}] (* Peter Luschny, Mar 07 2017 *)
PROG
(Maxima)
a(n):=sum(binomial(n+2, k)*binomial(n-k, k), k, 0, (n)/2); /* Vladimir Kruchinin, Sep 28 2015 */
(PARI) a(n) = sum(k=0, n/2, binomial(n+2, k)*binomial(n-k, k));
vector(30, n, a(n-3)) \\ Altug Alkan, Sep 28 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Aug 30 2011
STATUS
approved