login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A057977 GCD of consecutive central binomial coefficients: a(n) = gcd(A001405(n+1), A001405(n)). 35
1, 1, 1, 3, 2, 10, 5, 35, 14, 126, 42, 462, 132, 1716, 429, 6435, 1430, 24310, 4862, 92378, 16796, 352716, 58786, 1352078, 208012, 5200300, 742900, 20058300, 2674440, 77558760, 9694845, 300540195, 35357670, 1166803110, 129644790, 4537567650 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
The numbers can be seen as a generalization of the Catalan numbers, extending A000984(n)/(n+1) to A056040(n)/(floor(n/2)+1). They can also be seen as composing the aerated Catalan numbers A126120 with the aerated complementary Catalan numbers A138364. (Thus the name 'extended Catalan numbers' might be apt for this sequence.) - Peter Luschny, May 03 2011
a(n) is the number of lattice paths from (0,0) to (n,0) that do not go below the x-axis and consist of steps U=(1,1), D=(1,-1) and maximally one step H=(1,0). - Alois P. Heinz, Apr 17 2013
Equal to A063549 (see comments in that sequence). - Nathaniel Johnston, Nov 17 2014
a(n) can be computed with ballot numbers without multiplications or divisions, see Maple program. - Peter Luschny, Feb 23 2019
LINKS
Peter Luschny, The lost Catalan numbers.
FORMULA
G.f.: (4*x^2+x-1+(1-x)*sqrt(1-4*x^2))/(2*sqrt(1-4*x^2)*x^2). E.g.f.: (1+1/x)*BesselI(1, 2*x). - Vladeta Jovovic, Jan 19 2004
From Peter Luschny, Apr 30 2011: (Start)
Recurrence: a(0) = 1 and a(n) = a(n-1)*n^[n odd]*(4/(n+2))^[n even] for n > 0.
Asymptotic formula: Let [n even] = 1 if n is even, 0 otherwise. Let N := n+1+[n even]. Then a(n) ~ 2^N /((n+1)^[n even]*sqrt(Pi*(2*N+1))).
Integral representation: a(n) = (1/(2*Pi))*Int_{x=0..4}(x^(2*n-1)* ((4-x)^2/x)^cos(Pi*n))^(1/4) (End)
E.g.f.: U(0) where U(k)= 1 + x/(1 - x/(x + (k+1)*(k+2)//U(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Oct 19 2012
From R. J. Mathar, Sep 16 2016: (Start)
D-finite with recurrence: (n+2)*a(n) - n*a(n-1) + 4*(-2*n+1)*a(n-2) + 4*(n-1)*a(n-3) + 16*(n-3)*a(n-4) = 0.
D-finite with recurrence: -(n+2)*(n^2-5)*a(n) + 4*(-2*n-1)*a(n-1) + 4*(n-1)*(n^2+2*n-4)*a(n-2) = 0. (End)
Sum_{n>=0} 1/a(n) = 8/3 + 8*Pi/(9*sqrt(3)). - Amiram Eldar, Aug 20 2022
EXAMPLE
This GCD equals A001405(n) for the smaller odd number gcd(C(12,6), C(11,5)) = gcd(924,462) = 462 = C(11,5).
MAPLE
A057977_ogf := proc(z) b := z -> (z-1)/(2*z^2);
(2 + b(z))/sqrt(1-4*z^2) - b(z) end:
seq(coeff(series(A057977_ogf(z), z, n+3), z, n), n = 0..35);
A057977_rec := n -> `if`(n=0, 1, A057977_rec(n-1)*n^modp(n, 2)
*(4/(n+2))^modp(n+1, 2));
A057977_int := proc(n) int((x^(2*n-1)*((4-x)^2/x)^cos(Pi*n))^(1/4), x=0..4)/(2*Pi); round(evalf(%)) end:
A057977 := n -> (n!/iquo(n, 2)!^2) / (iquo(n, 2)+1):
seq(A057977(n), n=0..35); # Peter Luschny, Apr 30 2011
b := proc(p, q) option remember; local S;
if p = 0 and q = 0 then return 1 fi;
if p < 0 or p > q then return 0 fi;
S := b(p-2, q) + b(p, q-2);
if type(q, odd) then S := S + b(p-1, q-1) fi;
S end:
seq(b(n, n), n=0..35); # Peter Luschny, Feb 23 2019
MATHEMATICA
a[n_] := n! / (Quotient[n, 2]!^2 * (Quotient[n, 2]+1)); Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Feb 03 2012, after Peter Luschny *)
PROG
(PARI) a(n)=if(n<0, 0, (n+n%2)!/(n\2+1)!/(n\2+n%2)!/(1+n%2))
a(n)=n!/(n\2)!^2/(n\2+1) \\ Charles R Greathouse IV, May 02, 2011
(Sage)
def A057977():
x, n = 1, 1
while True:
yield x
m = n if is_odd(n) else 4/(n+2)
x *= m
n += 1
a = A057977(); [next(a) for i in range(36)] # Peter Luschny, Oct 21 2013
CROSSREFS
Bisections are A000108 and A001700.
Sequence in context: A277821 A371220 A318280 * A063549 A071653 A227631
KEYWORD
nonn,easy
AUTHOR
Labos Elemer, Nov 13 2000
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 20 12:25 EDT 2024. Contains 371844 sequences. (Running on oeis4.)