login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A194591 Least k >= 0 such that n*2^k - 1 or n*2^k + 1 is prime, or -1 if no such value exists. 15
0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 5, 0, 3, 0, 1, 1, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 1, 1, 2, 0, 1, 0, 1, 0, 1, 0, 4, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,13

COMMENTS

Fred Cohen and J. L. Selfridge showed that a(n) = -1 infinitely often.

a(n) = 0 iff n is in A045718.

A217892 and A194600 give indices and values of the records.

REFERENCES

Fred Cohen and J. L. Selfridge, Not every number is the sum or difference of two prime powers, Math. Comput. 29 (1975), 79-81.

LINKS

Arkadiusz Wesolowski, Table of n, a(n) for n = 1..1000

Eric Weisstein's World of Mathematics, Brier Number

FORMULA

If a(n)>0, then a(2n)=a(n)-1.

EXAMPLE

For n=7, 7*2^0-1 and 7*2^0+1 are composite, but 7*2^1-1=13 is prime, so a(7)=1.

MATHEMATICA

Table[k = 0; While[! PrimeQ[n*2^k - 1] && ! PrimeQ[n*2^k + 1], k++]; k, {n, 100}] (* T. D. Noe, Aug 29 2011 *)

CROSSREFS

Cf. A194600, A194603, A194606, A194607, A194608, A194635, A194636, A194637, A194638, A194639.

Cf. A040081, A040076, A076335, A180247.

Sequence in context: A266909 A276491 A035177 * A070105 A111397 A131743

Adjacent sequences:  A194588 A194589 A194590 * A194592 A194593 A194594

KEYWORD

sign

AUTHOR

Arkadiusz Wesolowski, Aug 29 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 17 10:59 EST 2019. Contains 320219 sequences. (Running on oeis4.)