OFFSET
0,3
COMMENTS
The signed version of this sequence appears as A077917.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
P. Z. Chinn, R. Grimaldi and S. Heubach, Tiling with Ls and Squares, J. Int. Sequences 10 (2007) #07.2.8.
S. Heubach, Tiling with Ls and Squares, 2005.
Index entries for linear recurrences with constant coefficients, signature (1,4,2).
FORMULA
a(n) = a(n-1) + 4*a(n-2) + 2*a(n-3).
a(n) = (-1)^n + (1/sqrt(3)) * ((1+sqrt(3))^n - (1-sqrt(3))^n).
G.f.: 1/(1 - x - 4*x^2 - 2*x^3).
a(n) = A028860(n+2) + (-1)^n. - R. J. Mathar, Oct 29 2010
E.g.f.: exp(-x) + (2/sqrt(3))*exp(x)*sinh(sqrt(3)*x). - G. C. Greubel, Dec 08 2022
From Greg Dresden, Nov 10 2024: (Start)
a(n) = 1 + 4*a(n-2) + 6*Sum_{i=0..n-3} a(i) for n>1.
a(2*n) = a(n)^2 + 4*a(n-1)^2 + 4*a(n-1)*a(n-2) for n>1. (End)
EXAMPLE
a(2) = 5 because the 2 X 2 board can be tiled either with 4 squares or with a single L-shaped tile (in four orientations) together with a single square tile.
MATHEMATICA
CoefficientList[Series[1/(1-x-4*x^2-2*x^3), {x, 0, 30}], x]
PROG
(Magma) I:=[1, 1, 5]; [n le 3 select I[n] else Self(n-1) + 4*Self(n-2) + 2*Self(n-3): n in [1..41]]; // G. C. Greubel, Dec 08 2022
(SageMath)
A028860 = BinaryRecurrenceSequence(2, 2, -1, 1)
[A127864(n) for n in range(51)] # G. C. Greubel, Dec 08 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Silvia Heubach (sheubac(AT)calstatela.edu), Feb 03 2007
STATUS
approved