login
A127864
Number of tilings of a 2 X n board with 1 X 1 and L-shaped tiles (where the L-shaped tiles cover 3 squares).
15
1, 1, 5, 11, 33, 87, 241, 655, 1793, 4895, 13377, 36543, 99841, 272767, 745217, 2035967, 5562369, 15196671, 41518081, 113429503, 309895169, 846649343, 2313089025, 6319476735, 17265131521, 47169216511, 128868696065, 352075825151, 961889042433, 2627929735167
OFFSET
0,3
COMMENTS
The signed version of this sequence appears as A077917.
LINKS
P. Z. Chinn, R. Grimaldi and S. Heubach, Tiling with Ls and Squares, J. Int. Sequences 10 (2007) #07.2.8.
S. Heubach, Tiling with Ls and Squares, 2005.
FORMULA
a(n) = a(n-1) + 4*a(n-2) + 2*a(n-3).
a(n) = (-1)^n + (1/sqrt(3)) * ((1+sqrt(3))^n - (1-sqrt(3))^n).
G.f.: 1/(1 - x - 4*x^2 - 2*x^3).
a(n) = A028860(n+2) + (-1)^n. - R. J. Mathar, Oct 29 2010
E.g.f.: exp(-x) + (2/sqrt(3))*exp(x)*sinh(sqrt(3)*x). - G. C. Greubel, Dec 08 2022
From Greg Dresden, Nov 10 2024: (Start)
a(n) = 1 + 4*a(n-2) + 6*Sum_{i=0..n-3} a(i) for n>1.
a(2*n) = a(n)^2 + 4*a(n-1)^2 + 4*a(n-1)*a(n-2) for n>1. (End)
EXAMPLE
a(2) = 5 because the 2 X 2 board can be tiled either with 4 squares or with a single L-shaped tile (in four orientations) together with a single square tile.
MATHEMATICA
CoefficientList[Series[1/(1-x-4*x^2-2*x^3), {x, 0, 30}], x]
PROG
(Magma) I:=[1, 1, 5]; [n le 3 select I[n] else Self(n-1) + 4*Self(n-2) + 2*Self(n-3): n in [1..41]]; // G. C. Greubel, Dec 08 2022
(SageMath)
A028860 = BinaryRecurrenceSequence(2, 2, -1, 1)
def A127864(n): return A028860(n+2) + (-1)^n
[A127864(n) for n in range(51)] # G. C. Greubel, Dec 08 2022
CROSSREFS
Column k=2 of A220054. - Alois P. Heinz, Dec 03 2012
Sequence in context: A323867 A280540 A077917 * A055936 A194589 A189918
KEYWORD
easy,nonn
AUTHOR
Silvia Heubach (sheubac(AT)calstatela.edu), Feb 03 2007
STATUS
approved