login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A189912
Extended Motzkin numbers, Sum_{k>=0} C(n,k)C(k), C(k) the extended Catalan number A057977(k).
9
1, 2, 4, 10, 25, 66, 177, 484, 1339, 3742, 10538, 29866, 85087, 243478, 699324, 2015082, 5822619, 16865718, 48958404, 142390542, 414837699, 1210439958, 3536809521, 10347314544, 30306977757, 88861597426, 260798283502, 766092871654, 2252240916665
OFFSET
0,2
COMMENTS
a(n) = Sum_{k=0..n} binomial(n,k)*A057977(k). For comparison:
A001006(n) = Sum_{k=0..n} binomial(n,k)*A057977(k)*[k is even],
A005717(n) = Sum_{k=0..n} binomial(n,k)*A057977(k)*[k is odd].
Thus one might simply say: The extended Motzkin numbers are the binomial sum of the extended Catalan numbers. Moreover: The Catalan numbers aerated with 0's at odd positions (A126120) are the inverse binomial transform of the Motzkin numbers (A001006). The complementary Catalan numbers (A001700) aerated with 0's at even positions (A138364) are the inverse binomial transform of the complementary Motzkin numbers (A005717). The extended Catalan numbers (A057977 = A126120 + A138364) are the inverse binomial transform of the extended Motzkin numbers (A189912).
David Scambler observed that [1, a(n-1)] for n >= 1 count the Dyck paths of semilength n which satisfy the condition "number of peaks <= number of returns + number of hills". - Peter Luschny, Oct 22 2012
LINKS
A. Asinowski and G. Rote, Point sets with many non-crossing matchings, arXiv preprint arXiv:1502.04925 [cs.CG], 2015.
FORMULA
a(n) = Sum_{k=0..n}(n!/(((n-k)!*floor(k/2)!^2)*(floor(k/2)+1)).
Recurrence: (n+2)*(n^2 + 2*n - 5)*a(n) = (2*n^3 + 7*n^2 - 14*n - 7)*a(n-1) + 3*(n-1)*(n^2 + 4*n - 2)*a(n-2). - Vaclav Kotesovec, Mar 20 2014
a(n) ~ 3^(n+1/2) / (2*sqrt(Pi*n)). - Vaclav Kotesovec, Mar 20 2014
Conjecture: a(n) = Sum_{k=0..floor(n/2)} (n+1-2*k)*A055151(n,k). - Werner Schulte, Oct 23 2016
a(n) = Sum_{k=0...n} (n+1-2*k)*(n!)/((k!)*(k+1)!*(n-2k)! ). - Per W. Alexandersson, May 28 2020
MAPLE
A189912 := proc(n) local k;
add(n!/(((n-k)!*iquo(k, 2)!^2)*(iquo(k, 2)+1)), k=0..n) end:
M := proc(n) option remember; `if`(n<2, 1, (3*(n-1)*M(n-2)+(2*n+1)*M(n-1))/(n+2)) end:
A189912 := n -> n*M(n-1)+M(n);
seq(A189912(i), i=0..28); # Peter Luschny, Sep 12 2011
MATHEMATICA
A057977[n_] := n!/(Quotient[n, 2]!^2*(Quotient[n, 2] + 1)); a[n_] := Sum[Binomial[n, k]*A057977[k], {k, 0, n}]; Table[a[n], {n, 0, 28}] (* Jean-François Alcover, May 21 2013, after Peter Luschny *)
Table[Sum[n!/(((n-k)!*Floor[k/2]!^2)*(Floor[k/2]+1)), {k, 0, n}], {n, 0, 30}] (* G. C. Greubel, Jan 24 2017 *)
A057977[n_] := Sum[n! (n + 1 - 2 k)/((k + 1)! (k!) (n - 2 k)!), {k, 0, n}] (* Per W. Alexandersson, May 28 2020 *)
PROG
(Sage)
@CachedFunction
def M(n): return (3*(n-1)*M(n-2)+(2*n+1)*M(n-1))/(n+2) if n>1 else 1
A189912 = lambda n: n*M(n-1) + M(n)
[A189912(i) for i in (0..28)] # Peter Luschny, Oct 22 2012
(PARI) a(n) = sum(k=0, n, binomial(n, k)*k!/( (k\2)!^2 * (k\2+1)) );
vector(30, n, a(n-1)) \\ G. C. Greubel, Jan 24 2017; Mar 28 2020
KEYWORD
nonn
AUTHOR
Peter Luschny, May 01 2011
STATUS
approved