login
A189911
Row sums of the extended Catalan triangle A189231.
5
1, 2, 4, 9, 18, 40, 80, 175, 350, 756, 1512, 3234, 6468, 13728, 27456, 57915, 115830, 243100, 486200, 1016158, 2032316, 4232592, 8465184, 17577014, 35154028, 72804200, 145608400, 300874500, 601749000, 1240940160, 2481880320, 5109183315, 10218366630
OFFSET
0,2
LINKS
FORMULA
Let a = Gamma(n-floor(n/2)), b = Gamma(floor(n/2+3/2)), d = Gamma( floor(n/2+1))^2, c = Gamma(n+1). Then a(n) = c*(a*b+d)/(a*b*d).
a(n) = A162246(n,n) + A162246(n,n+1) for n > 0.
From Peter Luschny, Oct 24 2013 : (Start)
E.g.f.: (x+1)*(BesselI(0, 2*x)+BesselI(1, 2*x)).
O.g.f.: I*(2*x^2-1)/(2*sqrt(2*x+1)*x*(2*x-1)^(3/2))-1/(2*x).
Recurrence: a(0) = 1; a(n) = a(n-1)*2 if n is even else ([n/2]+2)*(2*[n/2]+1)/([n/2]+1)^2. ([.] the floor brackets.)
a(n) = A056040(n) + A212303(n) = n$*(1+[(n+1)/2]^((-1)^n)), where n$ is the swinging factorial.
a(2*n) = (n+1)*C(2*n, n) (A037965);
a(2*n+1) = (n+2)*C(2*n+1, n+1) (A097070). (End)
Sum_{n>=0} 1/a(n) = 4*Pi/sqrt(3) - Pi^2/3 - 2. - Amiram Eldar, Aug 20 2022
D-finite with recurrence: (n-2)*(n+1)^2*a(n) - (2*(n-2)^2+2*n-12)*a(n-1) - 4*(n+2)*(n-1)^2*a(n-2) = 0. - Georg Fischer, Nov 25 2022
MAPLE
A189911 := proc(n) local a, b, d; if n = 0 then 1 else
a := GAMMA(n-floor(n/2)); b := GAMMA(floor(n/2+3/2));
d := GAMMA(floor(n/2+1))^2; GAMMA(n+1)*(a*b+d)/(a*b*d) fi end: seq(A189911(n), n=0..32);
A189911 := proc(n) h:=irem(n, 2); g:=iquo(n, 2); (g+h+1)*binomial(2*g+h, g+h) end; # Peter Luschny, Oct 24 2013
MATHEMATICA
a[n_] := Module[{q, r}, {q, r} = QuotientRemainder[n, 2]; (q+r+1)*Pochhammer[q+1, q+r]/(q+r)!]; Table[a[n], {n, 0, 32}] (* Jean-François Alcover, Jan 09 2014 *)
PROG
(Sage)
def A189911():
r, n = 1, 1
while True:
yield r
h = n//2
r *= 2 if is_even(n) else (h+2)*(2*h+1)/(h+1)^2
n += 1
a = A189911(); [next(a) for i in range(16)] # Peter Luschny, Oct 24 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, May 01 2011
STATUS
approved