The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A162246 Swinging polynomials, coefficients read by rows. 7
 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 3, 3, 6, 3, 3, 1, 1, 4, 4, 12, 6, 12, 4, 4, 1, 1, 5, 5, 20, 10, 30, 10, 20, 5, 5, 1, 1, 6, 6, 30, 15, 60, 20, 60, 15, 30, 6, 6, 1, 1, 7, 7, 42, 21, 105, 35, 140, 35, 105, 21, 42, 7, 7, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS Let p(n,x) = (1+x^2)^n+n*x*(1+x^2)^(n-1), then T(n,k) are the coefficients of these polynomials, read by rows, n = 0,1,... The central numbers of the rows, i.e., the coefficients of x^n of p(n,x), are the swinging factorial numbers A056040(n). Row sums: sum_{k=0..2n} T(n,k) = A001792(n). sum_{k=0..2n} isodd(n+k)T(n,k) = 2^n(isodd(n)+(n/2)isodd(n+1)) = 0, 2, 4, 8, 32, 32, 192, 128, 1024, 512, 5120, ... sum_{k=0..2n} iseven(n+k)T(n,k) = 2^n(isodd(n)(n/2)+isodd(n+1)) = 1, 1, 4, 12, 16, 80, 64, 448, 256, 2304, 1024, ... LINKS Peter Luschny, Die schwingende Fakultät und Orbitalsysteme, August 2011. FORMULA T(n,k) = n!/((n-ceiling(k/2))!*floor(k/2)!). EXAMPLE The central coefficients are marked by []. [1] 1,[1],1 1,2,[2],2,1 1,3,3,[6],3,3,1 1,4,4,12,[6],12,4,4,1 1,5,5,20,10,[30],10,20,5,5,1 1,6,6,30,15,60,[20],60,15,30,6,6,1 1,7,7,42,21,105,35,[140],35,105,21,42,7,7,1 p(0,x) = 1 p(1,x) = x^2+x+1 p(2,x) = x^4+2x^3+2x^2+2x+1 p(3,x) = x^6+3x^5+3x^4+6x^3+3x^2+3x+1 p(4,x) = x^8+4x^7+4x^6+12x^5+6x^4+12x^3+4x^2+4x+1 p(5,x) = x^10+5x^9+5x^8+20x^7+10x^6+30x^5+10x^4+20x^3+5x^2+5x+1 MAPLE p := (n, x) -> (1+x^2)^n+n*x*(1+x^2)^(n-1): seq(print(seq(coeff(expand(p(n, x)), x, i), i=0..2*n)), n=0..7); T := (n, k) -> n!/((n-ceil(k/2))!*floor(k/2)!); seq(print(seq(T(n, k), k=0..2*n)), n=0..7); MATHEMATICA t[n_, k_] := If[EvenQ[k], Binomial[n, k/2], Binomial[n, (k-1)/2]*(n-(k-1)/2)]; Table[t[n, k], {n, 0, 7}, {k, 0, 2*n}] // Flatten (* Jean-François Alcover, Jun 28 2013 *) CROSSREFS Cf. A056040, A001792. Sequence in context: A144431 A053821 A076545 * A277447 A333698 A213126 Adjacent sequences: A162243 A162244 A162245 * A162247 A162248 A162249 KEYWORD easy,nonn,tabf AUTHOR Peter Luschny, Jun 28 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 17:12 EST 2022. Contains 358702 sequences. (Running on oeis4.)