login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A213126 Rows of triangle formed using Pascal's rule, except sums in the n-th row are modulo n: T(n,0) = T(n,n) = 1 and T(n,k) = (T(n-1,k-1) + T(n-1,k)) mod n. 1
1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 3, 4, 4, 3, 1, 1, 4, 1, 2, 1, 4, 1, 1, 5, 5, 3, 3, 5, 5, 1, 1, 6, 2, 0, 6, 0, 2, 6, 1, 1, 7, 8, 2, 6, 6, 2, 8, 7, 1, 1, 8, 5, 0, 8, 2, 8, 0, 5, 8, 1, 1, 9, 2, 5, 8, 10, 10, 8, 5, 2, 9, 1, 1, 10, 11, 7, 1, 6, 8, 6 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,12

LINKS

Table of n, a(n) for n=0..85.

EXAMPLE

1

1 1

1 0 1

1 1 1 1

1 2 2 2 1

1 3 4 4 3 1

1 4 1 2 1 4 1

1 5 5 3 3 5 5 1

1 6 2 0 6 0 2 6 1

1 7 8 2 6 6 2 8 7 1

1 8 5 0 8 2 8 0 5 8 1

1 9 2 5 8 10 10 8 5 2 9 1

MATHEMATICA

T[n_, k_]:=If[k==0 || k==n, 1, Mod[T[n - 1, k - 1] + T[n- 1, k], n]]; Table[T[n, k], {n, 0, 15}, {k, 0, n}] // Flatten (* Indranil Ghosh, Apr 29 2017 *)

PROG

(Python)

src = [0]*1024

dst = [0]*1024

for n in range(0, 19):

.    dst[0] = dst[n] = 1

.    for k in range(1, n):

.    .    dst[k] = (src[k-1]+src[k]) % n

.    for k in range(0, n+1):

.    .    src[k] = dst[k]

.    .    print dst[k],

CROSSREFS

Cf. A007318 - Pascal's triangle read by rows.

Cf. A047999, A083093, A034931, A034930, A034932, A008975.

Sequence in context: A076545 A162246 A277447 * A118400 A159853 A087698

Adjacent sequences:  A213123 A213124 A213125 * A213127 A213128 A213129

KEYWORD

nonn,tabl

AUTHOR

Alex Ratushnyak, Jun 06 2012

EXTENSIONS

Offset corrected by Joerg Arndt, Dec 05 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 18 13:50 EST 2019. Contains 319271 sequences. (Running on oeis4.)