OFFSET
1,1
COMMENTS
If h belongs to the main diagonal of the triangle then 6*h+3 is a square since T(n,n) = (3/2)*(2*n+1)^2-1/2 and 6*T(n,n)+3 = 9*(2*n+1)^2. Also, the first column is A017209 (after 4). - Vincenzo Librandi, Nov 20 2012
LINKS
Vincenzo Librandi, Rows n = 1..100, flattened
FORMULA
Row sums: Sum_{m=1..n} T(n,m) = n*(5+6*n^2+15*n)/2. - R. J. Mathar, Jul 26 2009
T(n,m) = 3*A083487(n,m)+1. - R. J. Mathar, Jul 26 2009
EXAMPLE
Triangle begins:
13;
22, 37;
31, 52, 73;
40, 67, 94, 121;
49, 82, 115, 148, 181;
58, 97, 136, 175, 214, 253;
67, 112, 157, 202, 247, 292, 337;
76, 127, 178, 229, 280, 331, 382, 433; etc.
MATHEMATICA
Flatten@Table[6*m*n + 3*m + 3*n + 1, {n, 20}, {m, n}] (* Vincenzo Librandi, Mar 03 2012 *)
PROG
(Magma) [6*n*k + 3*n + 3*k + 1: k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 20 2012
CROSSREFS
KEYWORD
AUTHOR
Vincenzo Librandi, Jun 28 2009
EXTENSIONS
Edited by R. J. Mathar, Jul 26 2009
STATUS
approved