This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A189913 Triangle read by rows: T(n,k) = binomial(n, k) * k! / (floor(k/2)! * floor((k+2)/2)!). 1
 1, 1, 1, 1, 2, 1, 1, 3, 3, 3, 1, 4, 6, 12, 2, 1, 5, 10, 30, 10, 10, 1, 6, 15, 60, 30, 60, 5, 1, 7, 21, 105, 70, 210, 35, 35, 1, 8, 28, 168, 140, 560, 140, 280, 14, 1, 9, 36, 252, 252, 1260, 420, 1260, 126, 126, 1, 10, 45, 360, 420, 2520, 1050, 4200, 630, 1260, 42 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS The triangle may be regarded a generalization of the triangle A097610: A097610(n,k) = binomial(n,k)*(2*k)\$/(k+1); T(n,k) = binomial(n,k)*(k)\$/(floor(k/2)+1). Here n\$ denotes the swinging factorial A056040(n). As A097610 is a decomposition of the Motzkin numbers A001006, a combinatorial interpretation of T(n,k) in terms of lattice paths can be expected. T(n,n) = A057977(n) which can be seen as extended Catalan numbers. LINKS G. C. Greubel, Table of n, a(n) for the first 100 rows, flattened Peter Luschny, The lost Catalan numbers. FORMULA From R. J. Mathar, Jun 07 2011: (Start) T(n,1) = n. T(n,2) = A000217(n-1). T(n,3) = A027480(n-2). T(n,4) = A034827(n). (End) EXAMPLE [0]  1 [1]  1, 1 [2]  1, 2,  1 [3]  1, 3,  3,   3 [4]  1, 4,  6,  12,  2 [5]  1, 5, 10,  30, 10,  10 [6]  1, 6, 15,  60, 30,  60,  5 [7]  1, 7, 21, 105, 70, 210, 35, 35 MAPLE A189913 := (n, k) -> binomial(n, k)*(k!/iquo(k, 2)!^2)/(iquo(k, 2)+1): seq(print(seq(A189913(n, k), k=0..n)), n=0..7); MATHEMATICA T[n_, k_] := Binomial[n, k]*k!/((Floor[k/2])!*(Floor[(k + 2)/2])!); Table[T[n, k], {n, 0, 10}, {k, 0, n}]// Flatten (* G. C. Greubel, Jan 13 2018 *) PROG (PARI) {T(n, k) = binomial(n, k)*k!/((floor(k/2))!*(floor((k+2)/2))!) }; for(n=0, 10, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Jan 13 2018 (MAGMA) /* As triangle */ [[Binomial(n, k)*Factorial(k)/(Factorial(Floor(k/2))*Factorial(Floor((k + 2)/2))): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Jan 13 2018 CROSSREFS Row sums are A189912. Cf. A097610, A057977, A001006. Sequence in context: A279677 A262180 A320902 * A240807 A283672 A053268 Adjacent sequences:  A189910 A189911 A189912 * A189914 A189915 A189916 KEYWORD nonn,tabl,easy AUTHOR Peter Luschny, May 24 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 17 05:26 EST 2019. Contains 319207 sequences. (Running on oeis4.)