

A192066


Sum of the odd unitary divisors of n.


2



1, 1, 4, 1, 6, 4, 8, 1, 10, 6, 12, 4, 14, 8, 24, 1, 18, 10, 20, 6, 32, 12, 24, 4, 26, 14, 28, 8, 30, 24, 32, 1, 48, 18, 48, 10, 38, 20, 56, 6, 42, 32, 44, 12, 60, 24, 48, 4, 50, 26, 72, 14, 54, 28, 72, 8, 80, 30, 60, 24, 62, 32, 80, 1, 84, 48, 68, 18, 96, 48, 72, 10, 74, 38, 104, 20, 96, 56, 80, 6
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

The unitary analog of A000593.


LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
R. J. Mathar, Survey of Dirichlet series of multiplicative arithmetic functions, arXiv:1106.4038 [math.NT], section 4.2.
Eric Weisstein's World of Mathematics, Unitary Divisor
Wikipedia, Unitary_divisor


FORMULA

a(n) = sum_{dn, d odd, gcd(d,n/d)=1} d.
Dirichlet g.f. zeta(s)*zeta(s1)*(12^(1s))/( zeta(2s1)*(12^(12s)) ).


EXAMPLE

n=9 has the divisors 1, 3 and 9, of which 3 is not an unitary divisor because gcd(3,9/3) = gcd(3,3) <>1. This leaves 1 and 9 as unitary divisors which sum to a(9)=1+9=10.


MAPLE

unitaryOddSigma := proc(n, k) local a, d ; a := 0 ; for d in numtheory[divisors](n) do if type(d, 'odd') then if igcd(d, n/d) = 1 then a := a+d^k ; end if; end if; end do: a ; end proc:
A := proc(n) unitaryOddSigma(n, 1) ; end proc:


PROG

(Haskell)
a192066 = sum . filter odd . a077610_row
 Reinhard Zumkeller, Feb 12 2012


CROSSREFS

Cf. A068068, A034448.
Cf. A077610, A206787.
Sequence in context: A192085 A117001 A206787 * A098986 A000593 A115607
Adjacent sequences: A192063 A192064 A192065 * A192067 A192068 A192069


KEYWORD

nonn,mult,easy


AUTHOR

R. J. Mathar, Jun 22 2011


STATUS

approved



