login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192066
Sum of the odd unitary divisors of n.
4
1, 1, 4, 1, 6, 4, 8, 1, 10, 6, 12, 4, 14, 8, 24, 1, 18, 10, 20, 6, 32, 12, 24, 4, 26, 14, 28, 8, 30, 24, 32, 1, 48, 18, 48, 10, 38, 20, 56, 6, 42, 32, 44, 12, 60, 24, 48, 4, 50, 26, 72, 14, 54, 28, 72, 8, 80, 30, 60, 24, 62, 32, 80, 1, 84, 48, 68, 18, 96, 48, 72, 10, 74, 38, 104, 20, 96, 56, 80, 6
OFFSET
1,3
COMMENTS
The unitary analog of A000593.
LINKS
R. J. Mathar, Survey of Dirichlet series of multiplicative arithmetic functions, arXiv:1106.4038 [math.NT], 2011-2012, section 4.2.
Eric Weisstein's World of Mathematics, Unitary Divisor.
Wikipedia, Unitary divisor.
FORMULA
a(n) = Sum_{d|n, d odd, gcd(d,n/d)=1} d.
Dirichlet g.f.: zeta(s)*zeta(s-1)*(1-2^(1-s))/( zeta(2s-1)*(1-2^(1-2s)) ).
Sum_{k=1..n} a(k) ~ Pi^2 * n^2 / (21*zeta(3)). - Vaclav Kotesovec, Feb 02 2019
Multiplicative with a(2^e) = 1, and a(p^e) = p^e + 1 for p > 2. - Amiram Eldar, Sep 18 2020
EXAMPLE
n=9 has the divisors 1, 3 and 9, of which 3 is not a unitary divisor because gcd(3,9/3) = gcd(3,3) != 1. This leaves 1 and 9 as unitary divisors which sum to a(9) = 1+9 = 10.
MAPLE
unitaryOddSigma := proc(n, k) local a, d ; a := 0 ; for d in numtheory[divisors](n) do if type(d, 'odd') then if igcd(d, n/d) = 1 then a := a+d^k ; end if; end if; end do: a ; end proc:
A := proc(n) unitaryOddSigma(n, 1) ; end proc:
MATHEMATICA
a[n_] := DivisorSum[n, Boole[OddQ[#] && GCD[#, n/#] == 1]*#&];
Array[a, 80] (* Jean-François Alcover, Nov 16 2017 *)
f[2, p_] := 1; f[p_, e_] := p^e + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 18 2020 *)
PROG
(Haskell)
a192066 = sum . filter odd . a077610_row
-- Reinhard Zumkeller, Feb 12 2012
(PARI) a(n) = sumdiv(n, d, if ((gcd(d, n/d)==1) && (d%2), d)); \\ Michel Marcus, Nov 17 2017
CROSSREFS
KEYWORD
nonn,mult,easy
AUTHOR
R. J. Mathar, Jun 22 2011
STATUS
approved