login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A192065 Expansion of prod(k>=1, Q(x^k)^k ) where Q(x)=prod(k>=1, 1+x^k ). 28
1, 1, 3, 7, 14, 28, 58, 106, 201, 372, 669, 1187, 2101, 3624, 6229, 10591, 17796, 29659, 49107, 80492, 131157, 212237, 341084, 544883, 865717, 1367233, 2148552, 3359490, 5227270, 8096544, 12486800, 19174319, 29326306, 44678825, 67811375, 102549673, 154545549 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Euler transform of A002131. - Vaclav Kotesovec, Mar 26 2018

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)

FORMULA

a(0) = 1, a(n) = (1/n)*Sum_{k=1..n} A288418(k)*a(n-k) for n > 0. - Seiichi Manyama, Jun 09 2017

a(n) ~ exp(3*Pi^(2/3) * Zeta(3)^(1/3) * n^(2/3)/2^(5/3) - Pi^(4/3) * n^(1/3) / (3*2^(7/3) * Zeta(3)^(1/3)) - Pi^2 / (864 * Zeta(3))) * Zeta(3)^(1/6) / (2^(19/24) * sqrt(3) * Pi^(1/6) * n^(2/3)). - Vaclav Kotesovec, Mar 23 2018

MATHEMATICA

nn = 30; b = Table[DivisorSigma[1, n], {n, nn}]; CoefficientList[Series[Product[(1 + x^m)^b[[m]], {m, nn}], {x, 0, nn}], x] (* T. D. Noe, Jun 19 2012 *)

kmax = 37; Product[QPochhammer[-1, x^k]^k/2^k, {k, 1, kmax}] + O[x]^kmax // CoefficientList[#, x]& (* Jean-Fran├žois Alcover, Jul 03 2017 *)

nmax = 40; CoefficientList[Series[Exp[Sum[Sum[DivisorSum[k, # / GCD[#, 2] &] * x^(j*k) / j, {k, 1, Floor[nmax/j] + 1}], {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 31 2018 *)

PROG

(PARI) N=66;  x='x+O('x^N); /* that many terms */

Q(x)=prod(k=1, N, 1+x^k);

gf=prod(k=1, N, Q(x^k)^k ); /* == 1 +x +3*x^2 +7*x^3 +14*x^4 +28*x^5 +58*x^6 +... */

Vec(gf) /* show terms */ /* Joerg Arndt, Jun 24 2011 */

CROSSREFS

Cf. A061256 (1/prod(k>=1, P(x^k)^k ) where P(x)=prod(k>=1, 1-x^k ) ).

Product_{k>=1} (1 + x^k)^sigma_m(k): A107742 (m=0), this sequence (m=1), A288414 (m=2), A288415 (m=3), A301548 (m=4), A301549 (m=5), A301550 (m=6), A301551 (m=7), A301552 (m=8).

Sequence in context: A293334 A266625 A151754 * A157672 A125899 A266791

Adjacent sequences:  A192062 A192063 A192064 * A192066 A192067 A192068

KEYWORD

nonn

AUTHOR

Joerg Arndt, Jun 24 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 29 20:42 EDT 2020. Contains 334710 sequences. (Running on oeis4.)