OFFSET
1,3
COMMENTS
Inverse Mobius transform of 1, 0, 3, 0, 5, 0, 7, 0, 0, 0, 11, 0, 13, 0, 15, 0, 17, 0, 19, 0, 21, 0, 23, 0, 0, 0, 0, 0, 29... - R. J. Mathar, Jul 12 2012
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Jon Maiga, Computer-generated formulas for A206787, Sequence Machine.
FORMULA
a(n) = Sum_{d|n} d*mu(2*d)^2, where mu is the Möbius function (A008683). - Ridouane Oudra, Aug 14 2019
Multiplicative with a(2^e) = 1, and a(p^e) = p + 1 for p > 2. - Amiram Eldar, Sep 18 2020
Sum_{k=1..n} a(k) ~ (1/3) * n^2. - Amiram Eldar, Nov 17 2022
Dirichlet g.f.: (zeta(s)*zeta(s-1)/zeta(2*s-2))*(2^s/(2^s+2)). - Amiram Eldar, Jan 03 2023
From Antti Karttunen, Nov 22 2023: (Start)
a(n) = Sum_{d|n} abs(A349343(d)). [See R. J. Mathar's Jul 12 2012 comment above]
(End)
a(n) = Sum_{d divides n, d odd} d * mu(d)^2. - Peter Bala, Feb 01 2024
MAPLE
seq(add(d*mobius(2*d)^2, d in divisors(n)), n=1 .. 80); # Ridouane Oudra, Aug 14 2019
MATHEMATICA
a[n_] := DivisorSum[n, #*Boole[OddQ[#] && SquareFreeQ[#]]&]; Array[a, 80] (* Jean-François Alcover, Dec 05 2015 *)
f[2, e_] := 1; f[p_, e_] := p + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 18 2020 *)
PROG
(Haskell)
a206787 = sum . filter odd . a206778_row
(PARI) a(n) = sumdiv(n, d, d*(d % 2)*issquarefree(d)); \\ Michel Marcus, Sep 21 2014
(Magma) [&+[d:d in Divisors(m)|IsOdd(d) and IsSquarefree(d)]:m in [1..72]]; // Marius A. Burtea, Aug 14 2019
(Python)
from math import prod
from sympy import primefactors
def A206787(n): return prod(1+(p if p>2 else 0) for p in primefactors(n)) # Chai Wah Wu, Oct 10 2024
CROSSREFS
Inverse Möbius transform of the absolute values of A349343.
KEYWORD
nonn,mult,easy
AUTHOR
Reinhard Zumkeller, Feb 12 2012
STATUS
approved