This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A068068 Number of odd unitary divisors of n. d is a unitary divisor of n if d divides n and GCD(d,n/d)=1. 12
 1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 4, 1, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 1, 4, 2, 4, 2, 2, 2, 4, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 4, 2, 2, 4, 2, 2, 4, 1, 4, 4, 2, 2, 4, 4, 2, 2, 2, 2, 4, 2, 4, 4, 2, 2, 2, 2, 2, 4, 4, 2, 4, 2, 2, 4, 4, 2, 4, 2, 4, 2, 2, 2, 4, 2, 2, 4, 2, 2, 8 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Shadow transform of triangular numbers. a(n) is the number of primitive Pythagorean triangles with inradius n. For the smallest inradius of exactly 2^n primitive Pythagorean triangles see A070826. Multiplicative with a(2^e) = 1, a(p^e) = 2, p>2. - Christian G. Bower May 18 2005 Number of primitive Pythagorean triangles with leg 4n. For smallest (even) leg of exactly 2^n PPTs, see A088860. - Lekraj Beedassy, Jul 12 2006 As shown by Chi and Killgrove, a(n) is the total number of primitive Pythagorean triples satisfying area = n * perimeter, or equivalently 2 raised to the power of the number of distinct, odd primes contained in n. - Ant King, Mar 15 2011 This is the case k=0 of the sum over the k-th powers of the odd unitary divisors of n, which is multiplicative with a(2^e)=1 and a(p^e)=1+p^(e*k), p>2, and has Dirichlet g.f. zeta(s)*zeta(s-k)*(1-2^(k-s))/( zeta(2s-k)*(1-2^(k-2*s)) ). - R. J. Mathar, Jun 20 2011 Also the number of odd squarefree divisors of n: a(n) = sum ((A077610(n,k) mod 2): k = 1..A034444(k)) = sum ((A206778(n,k) mod 2): k = 1..A034444(k)). - Reinhard Zumkeller, Feb 12 2012 REFERENCES Henjin Chi and Raymond Killgrove, Problem 1447, Crux Math 15(5), May 1989. Henjin Chi and Raymond Killgrove, Solution to Problem 1447, Crux Math 16(7), September 1990./ LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 L. J. Gerstein, Pythagorean triples and inner products, Math. Mag., 78 (2005), 205-213. Lorenz Halbeisen and Norbert Hungerbuehler, Number theoretic aspects of a combinatorial function, Notes on Number Theory and Discrete Mathematics 5 (1999) 138-150. (ps, pdf) R. J. Mathar, Survey of Dirichlet series of multiplicative arithmetic functions, arXiv:1106.4038 [math.NT], 2011-2012. Neville Robbins, On the number of primitive Pythagorean triangles with a given inradius, Fibonacci Quart. 44 (2006), no. 4, 368-369. Eric Weisstein's World of Mathematics, Unitary Divisor Wikipedia, Unitary divisor N. J. A. Sloane, Transforms FORMULA a(n) = A034444(2n)/2. If n is even, a(n) = 2^(omega(n)-1); if n is odd, a(n) = 2^omega(n). Here omega(n) = A001221(n) is the number of distinct prime divisors of n. a(n)=A024361(4n). - Lekraj Beedassy, Jul 12 2006 Dirichlet g.f. zeta^2(s)/ ( zeta(2*s)*(1+2^(-s)) ). Dirichlet convolution of A034444 and A154269. - R. J. Mathar, Apr 16 2011 MAPLE A068068 := proc(n) local a, f; a :=1 ; for f in ifactors(n) do if op(1, f) > 2 then a := a*2 ; end if; end do: a ; end proc: # R. J. Mathar, Apr 16 2011 MATHEMATICA a[n_] := Length[Select[Divisors[n], OddQ[ # ]&&GCD[ #, n/# ]==1&]] a[n_] := 2^(PrimeNu[n]+Mod[n, 2]-1); Array[a, 105] (* Jean-François Alcover, Dec 01 2015 *) PROG (Haskell) a068068 = length . filter odd . a077610_row -- Reinhard Zumkeller, Feb 12 2012 (PARI) a(n) = sumdiv(n, d, (d%2)*(gcd(d, n/d)==1)); \\ Michel Marcus, May 13 2014 (PARI) a(n) = 2^omega(n>>valuation(n, 2)) \\ Charles R Greathouse IV, May 14 2014 CROSSREFS Cf. A056901, A068067. Sequence in context: A080942 A099812 A246600 * A193523 A092505 A066086 Adjacent sequences:  A068065 A068066 A068067 * A068069 A068070 A068071 KEYWORD nonn,mult AUTHOR Robert G. Wilson v, Feb 19 2002 EXTENSIONS Edited by Dean Hickerson, Jun 08 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 17 23:21 EDT 2019. Contains 325109 sequences. (Running on oeis4.)