This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A181068 G.f.: exp( Sum_{n>=1} [ Sum_{k>=0} C(n+k-1,k)^4 *x^k ] *x^n/n ). 2
 1, 1, 2, 11, 80, 714, 7095, 76206, 864590, 10227727, 125001862, 1568419058, 20108619244, 262510020319, 3479914302802, 46742907726147, 635092339459857, 8716058291255777, 120686879727465365, 1684357785848110976 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Compare g.f. to a g.f. of the Catalan numbers (A000108): . exp( Sum_{n>=1} [ Sum_{k>=0} C(n+k-1,k)^2 *x^k ] *x^n/n ). LINKS EXAMPLE G.f.: A(x) = 1 + x + 2*x^2 + 11*x^3 + 80*x^4 + 714*x^5 + 7095*x^6 +... The logarithm begins: log(A(x)) = x + 3*x^2/2 + 28*x^3/3 + 275*x^4/4 + 3126*x^5/5 + 37632*x^6/6 +...+ A181069(n)*x^n/n +... which equals the series: log(A(x)) = (1 + x + x^2 + x^3 + x^4 + x^5 + x^6 +...)*x + (1 + 2^4*x + 3^4*x^2 + 4^4*x^3 + 5^4*x^4 + 6^4*x^5 +...)*x^2/2 + (1 + 3^4*x + 6^4*x^2 + 10^4*x^3 + 15^4*x^4 + 21^4*x^5 +...)*x^3/3 + (1 + 4^4*x + 10^4*x^2 + 20^4*x^3 + 35^4*x^4 + 56^4*x^5 +...)*x^4/4 + (1 + 5^4*x + 15^4*x^2 + 35^4*x^3 + 70^4*x^4 + 126^4*x^5 +...)*x^5/5 + (1 + 6^4*x + 21^4*x^2 + 56^4*x^3 + 126^4*x^4 + 252^4*x^5 +...)*x^6/6 + (1 + 7^4*x + 28^4*x^2 + 84^4*x^3 + 210^4*x^4 + 462^4*x^5 +...)*x^7/7 +... PROG (PARI) {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, n, binomial(m+k-1, k)^4*x^k)*x^m/m)+x*O(x^n)), n)} CROSSREFS Cf. A181069 (log), A181066 (variant). Sequence in context: A099661 A027110 A118969 * A056846 A277500 A197718 Adjacent sequences:  A181065 A181066 A181067 * A181069 A181070 A181071 KEYWORD nonn AUTHOR Paul D. Hanna, Oct 08 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 20:50 EDT 2019. Contains 324145 sequences. (Running on oeis4.)