The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A181067 a(n) = Sum_{k=0..n-1} binomial(n-1,k)^2 * binomial(n,k). 3
 1, 3, 16, 95, 606, 4032, 27616, 193167, 1372930, 9881498, 71846160, 526764680, 3889340560, 28888634400, 215680108416, 1617467908751, 12177754012458, 92004463332486, 697263463622080, 5298985086555090, 40371796982444356 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..200 FORMULA L.g.f.: Sum_{n>=1} [ Sum_{k>=0} binomial(n+k-1,k)^3 *x^k ] *x^n/n. Logarithmic derivative of A181066. Recurrence: n^2*a(n) = - (n^2-17*n+10)*a(n-1) + 48*(n^2-3*n+1)*a(n-2) + 16*(n-3)*(11*n-36)*a(n-3) + 128*(n-4)^2*a(n-4). - Vaclav Kotesovec, Oct 24 2012 a(n) ~ sqrt(3)*8^n/(6*Pi*n). - Vaclav Kotesovec, Oct 24 2012 a(n) = 3F2([1-n, 1-n, -n], [1, 1], -1). - Pierre-Louis Giscard, Jul 20 2013 a(n) = n * hypergeometric([-n+1,-n+1,-n+1], [1,2], -1) for n > 0. - Emanuele Munarini, Sep 27 2016 a(n) = Sum_{k=0..n-1} ((n-k)/n)^2 * binomial(n,k)^3. - G. C. Greubel, Apr 05 2021 EXAMPLE L.g.f.: L(x) = x + 3*x^2/2 + 16*x^3/3 + 95*x^4/4 + 606*x^5/5 + ... which equals the series:   L(x) = (1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + ...)*x   + (1 + 2^3*x +  3^3*x^2 +  4^3*x^3 +   5^3*x^4 +   6^3*x^5 + ...)*x^2/2   + (1 + 3^3*x +  6^3*x^2 + 10^3*x^3 +  15^3*x^4 +  21^3*x^5 + ...)*x^3/3   + (1 + 4^3*x + 10^3*x^2 + 20^3*x^3 +  35^3*x^4 +  56^3*x^5 + ...)*x^4/4   + (1 + 5^3*x + 15^3*x^2 + 35^3*x^3 +  70^3*x^4 + 126^3*x^5 + ...)*x^5/5   + (1 + 6^3*x + 21^3*x^2 + 56^3*x^3 + 126^3*x^4 + 252^3*x^5 + ...)*x^6/6 + ... Exponentiation yields the g.f. of A181066:   exp(L(x)) = 1 + x + 2*x^2 + 7*x^3 + 31*x^4 + 157*x^5 + 865*x^6 + ... + A181066(n)*x^n + ... MAPLE A181067:= n-> add(((n-k)/n)^2*binomial(n, k)^3, k=0..n-1); seq(A181067(n), n=1..25); # G. C. Greubel, Apr 05 2021 MATHEMATICA Table[Sum[Binomial[n-1, k]^2*Binomial[n, k], {k, 0, n-1}], {n, 1, 20}] (* Vaclav Kotesovec, Oct 24 2012 *) Table[HypergeometricPFQ[{1-n, 1-n, -n}, {1, 1}, -1], {n, 1, 20}] (* Pierre-Louis Giscard, Jul 20 2013 *) PROG (PARI) {a(n)=sum(k=0, n-1, binomial(n-1, k)^3*n/(n-k))} (PARI) {a(n)=n*polcoeff(sum(m=1, n, sum(k=0, n, binomial(m+k-1, k)^3*x^k)*x^m/m)+x*O(x^n), n)} (Maxima) makelist(hypergeometric([-n+1, -n+1, -n], [1, 1], -1), n, 0, 12); /* Emanuele Munarini, Sep 27 2016 */ (Magma) [(&+[ ((n-k)/n)^2*Binomial(n, k)^3 : k in [0..n-1]]): n in [1..25]]; // G. C. Greubel, Apr 05 2021 (Sage) [sum( ((n-k)/n)^2*binomial(n, k)^3 for k in (0..n-1) ) for n in (1..25)] # G. C. Greubel, Apr 05 2021 CROSSREFS Cf. A181066 (exp), A181069 (variant). Sequence in context: A074555 A137644 A114174 * A006347 A000270 A157051 Adjacent sequences:  A181064 A181065 A181066 * A181068 A181069 A181070 KEYWORD nonn AUTHOR Paul D. Hanna, Oct 03 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 21 15:55 EDT 2021. Contains 343156 sequences. (Running on oeis4.)