This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A181070 G.f.: A(x) = exp( Sum_{n>=1} (Sum_{k=0..n} C(n,k)^(k+1)*x^k)*x^n/n ). 6
 1, 1, 2, 4, 8, 23, 88, 379, 3044, 32116, 379279, 9160509, 237458908, 7651718328, 495105710770, 29747390685988, 2718143583980173, 436044028162542425, 61494671526637653928, 16346049663440380567782, 6106008029903796482509688 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Conjecture: this sequence consists entirely of integers. Note that the following g.f. does NOT yield an integer series: exp( Sum_{n>=1} (Sum_{k=0..n} C(n,k)^k * x^k) * x^n/n ). LINKS EXAMPLE G.f. A(x) = 1 + x + 2*x^2 + 4*x^3 + 8*x^4 + 23*x^5 + 88*x^6 + ... The logarithm of g.f. A(x) begins: log(A(x)) = x + 3*x^2/2 + 7*x^3/3 + 15*x^4/4 + 66*x^5/5 + 357*x^6/6 + 1891*x^7/7 + ... + A181071(n)*x^n/n + ... and equals the series: log(A(x)) = (1 + x)*x + (1 + 2^2*x + x^2)*x^2/2 + (1+ 3^2*x + 3^3*x^2 + x^3)*x^3/3 + (1+ 4^2*x + 6^3*x^2 + 4^4*x^3 + x^4)*x^4/4 + (1+ 5^2*x + 10^3*x^2 + 10^4*x^3 + 5^5*x^4 + x^5)*x^5/5 + (1+ 6^2*x + 15^3*x^2 + 20^4*x^3 + 15^5*x^4 + 6^6*x^5 + x^6)*x^6/6 + ... PROG (PARI) {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m, k)^(k+1)*x^k)*x^m/m)+x*O(x^n)), n)} CROSSREFS Cf. A181071(log), variants: A181080, A181072, A181074. Sequence in context: A151380 A295419 A290816 * A226659 A009327 A027168 Adjacent sequences:  A181067 A181068 A181069 * A181071 A181072 A181073 KEYWORD nonn AUTHOR Paul D. Hanna, Oct 02 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 17 16:58 EDT 2019. Contains 325107 sequences. (Running on oeis4.)