This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A181071 a(n) = Sum_{k=0..[n/2]} C(n-k,k)^(k+1) * n/(n-k). 5
 1, 3, 7, 15, 66, 357, 1891, 20559, 257605, 3436908, 96199478, 2734569969, 96260508267, 6820892444439, 438665726703387, 43006289605790127, 7366025744010911808, 1099005822684238964181, 309398207716948885643749 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS FORMULA Logarithmic derivative of A181070. EXAMPLE L.g.f.: L(x) = x + 3*x^2/2 + 7*x^3/3 + 15*x^4/4 + 66*x^5/5 +... which equals the series: L(x) = (1 + x)*x + (1 + 2^2*x + x^2)*x^2/2 + (1+ 3^2*x + 3^3*x^2 + x^3)*x^3/3 + (1+ 4^2*x + 6^3*x^2 + 4^4*x^3 + x^5)*x^4/4 + (1+ 5^2*x + 10^3*x^2 + 10^4*x^3 + 5^5*x^4 + x^5)*x^5/5 + (1+ 6^2*x + 15^3*x^2 + 20^4*x^3 + 15^5*x^4 + 6^6*x^5 + x^6)*x^6/6 +... Exponentiation yields the g.f. of A181070: exp(L(x)) = 1 + x + 2*x^2 + 4*x^3 + 8*x^4 + 23*x^5 + 88*x^6 + 379*x^7 + 3044*x^8 +... PROG (PARI) a(n)=sum(k=0, n\2, binomial(n-k, k)^(k+1)*n/(n-k)) (PARI) {a(n)=n*polcoeff(sum(m=1, n, sum(k=0, m, binomial(m, k)^(k+1)*x^k)*x^m/m)+x*O(x^n), n)} CROSSREFS Cf. A181070 (exp), variants: A181081, A181073. Sequence in context: A268061 A298358 A023370 * A258936 A096422 A154795 Adjacent sequences:  A181068 A181069 A181070 * A181072 A181073 A181074 KEYWORD nonn AUTHOR Paul D. Hanna, Oct 02 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 19 12:49 EDT 2019. Contains 325159 sequences. (Running on oeis4.)