

A179196


Number of primes up to the nth Ramanujan prime: A000720(A104272(n)).


11



1, 5, 7, 10, 13, 15, 17, 19, 20, 25, 26, 28, 31, 35, 36, 39, 41, 42, 49, 50, 51, 52, 53, 56, 57, 60, 63, 64, 69, 70, 73, 74, 79, 80, 81, 83, 84, 85, 89, 93, 94, 96, 104, 105, 107, 108, 109, 110, 111, 116, 117, 118, 119, 120, 123, 128, 129, 131, 133, 136, 140, 142, 143
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

a(n) = k = pi(p_k) = pi(R_n), where pi is the prime number counting function and R_n is the nth Ramanujan prime. I.e., p_k, the kth prime, is the nth Ramanujan prime.
Prime index of A168421(n), that is A000720(A168421(n)), is equal to a(n)  n + 1.  John W. Nicholson, Sep 16 2015


LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
S. Ramanujan, A proof of Bertrand's postulate, J. Indian Math. Soc., 11 (1919), 181182.
H. W. Shapiro, Iterates of arithmetic functions and a property of the sequence of primes, Pacific J. Math. Volume 3, Number 3 (1953), 647655.
J. Sondow, Ramanujan primes and Bertrand's postulate, Amer. Math. Monthly, 116 7(2009), 630635.
J. Sondow, Ramanujan primes and Bertrand's postulate, arXiv:0907.5232 [math.NT], 2009, 2010.
J. Sondow, J. W. Nicholson, and T. D. Noe, Ramanujan Primes: Bounds, Runs, Twins, and Gaps, J. Integer Seq. 14 (2011) Article 11.6.2
Wikipedia, Ramanujan prime


FORMULA

a(n) = rho(n) in the paper by Sondow, Nicholson, and Noe.
prime(a(n)) = R_n = A104272(n).
a(n) = A000720(A168421(n)) + n  1.  John W. Nicholson, Sep 16 2015
a(n) = A000720(A104272(n)).  John W. Nicholson, Oct 28 2015


EXAMPLE

The 10th Ramanujan prime is 97, and pi(97) = 25, so a(10) = 25.


PROG

(Perl) use ntheory ":all"; say prime_count(nth_ramanujan_prime($_)) for 1..100; # Dana Jacobsen, Dec 25 2015


CROSSREFS

Cf. A168421, A168425.
Sequence in context: A154689 A175766 A243187 * A024325 A060873 A186542
Adjacent sequences: A179193 A179194 A179195 * A179197 A179198 A179199


KEYWORD

nonn


AUTHOR

John W. Nicholson, Jul 02 2010


STATUS

approved



