

A179196


Number of primes up to the nth Ramanujan prime: A000720(A104272(n)).


11



1, 5, 7, 10, 13, 15, 17, 19, 20, 25, 26, 28, 31, 35, 36, 39, 41, 42, 49, 50, 51, 52, 53, 56, 57, 60, 63, 64, 69, 70, 73, 74, 79, 80, 81, 83, 84, 85, 89, 93, 94, 96, 104, 105, 107, 108, 109, 110, 111, 116, 117, 118, 119, 120, 123, 128, 129, 131, 133, 136, 140, 142, 143
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

a(n) = k = pi(p_k) = pi(R_n) That is, p_k is the nth Ramanujan prime, R_n the kth prime. pi(R_n) where pi is the prime number counting function and R_n is the nth Ramanujan prime.


REFERENCES

S. Ramanujan, A proof of Bertrand's postulate, J. Indian Math. Soc. 11 (1919), 181182.
H. W. Shapiro, Iterates of arithmetic functions and a property of the sequence of primes, Pacific J. Math. Volume 3, Number 3 (1953), 647655.
J. Sondow, Ramanujan Primes and Bertrand's Postulate, American Mathematical Monthly, Volume 116, Number 7, AugustSeptember 2009 , pp. 630635(6)


LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
J. Sondow, Ramanujan primes and Bertrand's postulate, Amer. Math. Monthly 116 (2009) 630635.
J. Sondow, J. W. Nicholson, and T. D. Noe, Ramanujan Primes: Bounds, Runs, Twins, and Gaps, J. Integer Seq. 14 (2011) Article 11.6.2
Wikipedia, Ramanujan prime


FORMULA

a(n) = rho(n) in the paper by Sondow, Nicholson, and Noe.
prime(a(n)) = R_n = A104272(n).


EXAMPLE

The 10th Ramanujan Prime is 97. Pi(97) = 25. So, a(10) = 25.


CROSSREFS

Cf. A168421, A168425.
Sequence in context: A172321 A154689 A175766 * A024325 A060873 A186542
Adjacent sequences: A179193 A179194 A179195 * A179197 A179198 A179199


KEYWORD

nonn


AUTHOR

John W. Nicholson, Jul 02 2010


STATUS

approved



