The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A179196 Number of primes up to the n-th Ramanujan prime: A000720(A104272(n)). 12
 1, 5, 7, 10, 13, 15, 17, 19, 20, 25, 26, 28, 31, 35, 36, 39, 41, 42, 49, 50, 51, 52, 53, 56, 57, 60, 63, 64, 69, 70, 73, 74, 79, 80, 81, 83, 84, 85, 89, 93, 94, 96, 104, 105, 107, 108, 109, 110, 111, 116, 117, 118, 119, 120, 123, 128, 129, 131, 133, 136, 140, 142, 143 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(n) = k = pi(p_k) = pi(R_n), where pi is the prime number counting function and R_n is the n-th Ramanujan prime. I.e., p_k, the k-th prime, is the n-th Ramanujan prime. Prime index of A168421(n), that is A000720(A168421(n)), is equal to a(n) - n + 1. - John W. Nicholson, Sep 16 2015 LINKS Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 Christian Axler, On the number of primes up to the nth Ramanujan prime, arXiv:1711.04588 [math.NT], 2017. Christian Axler, On Ramanujan primes, Functiones et Approximatio Commentarii Mathematici (2019). S. Ramanujan, A proof of Bertrand's postulate, J. Indian Math. Soc., 11 (1919), 181-182. H. W. Shapiro, Iterates of arithmetic functions and a property of the sequence of primes, Pacific J. Math. Volume 3, Number 3 (1953), 647-655. J. Sondow, Ramanujan primes and Bertrand's postulate, Amer. Math. Monthly, 116 7(2009), 630-635. J. Sondow, Ramanujan primes and Bertrand's postulate, arXiv:0907.5232 [math.NT], 2009, 2010. J. Sondow, J. W. Nicholson, and T. D. Noe, Ramanujan Primes: Bounds, Runs, Twins, and Gaps, J. Integer Seq. 14 (2011) Article 11.6.2. Wikipedia, Ramanujan prime FORMULA a(n) = A000720(A104272(n)). a(n) = rho(n) in the paper by Sondow, Nicholson, and Noe. prime(a(n)) = R_n = A104272(n). a(n) = A000720(A168421(n)) + n - 1. - John W. Nicholson, Sep 16 2015 EXAMPLE The 10th Ramanujan prime is 97, and pi(97) = 25, so a(10) = 25. MATHEMATICA f[n_] := With[{s = Table[{k, PrimePi[k] - PrimePi[k/2]}, {k, Prime[3 n]}]}, Table[1 + First@ Last@ Select[s, Last@ # == i - 1 &], {i, n}]]; PrimePi@ f@ 63 (* Michael De Vlieger, Nov 14 2017, after Jonathan Sondow at A104272 *) PROG (Perl) use ntheory ":all"; say prime_count(nth_ramanujan_prime(\$_)) for 1..100; # Dana Jacobsen, Dec 25 2015 CROSSREFS Cf. A168421, A168425. Sequence in context: A175766 A243187 A333308 * A024325 A060873 A186542 Adjacent sequences: A179193 A179194 A179195 * A179197 A179198 A179199 KEYWORD nonn AUTHOR John W. Nicholson, Jul 02 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 18:21 EST 2022. Contains 358703 sequences. (Running on oeis4.)