

A168421


Small Associated Ramanujan Prime, p_(in).


11



2, 7, 11, 17, 23, 29, 31, 37, 37, 53, 53, 59, 67, 79, 79, 89, 97, 97, 127, 127, 127, 127, 127, 137, 137, 149, 157, 157, 179, 179, 191, 191, 211, 211, 211, 223, 223, 223, 233, 251, 251, 257, 293, 293, 307, 307, 307, 307, 307, 331, 331, 331
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

a(n) is the smallest prime p_(k+1n) on the left side of the Ramanujan Prime Corollary, 2*p_(in) > p_i for i > k, where the nth Ramanujan Prime R_n is the kth prime p_k. [Comment clarified and shortened by Jonathan Sondow, Dec 20 2013]
Smallest prime number, a(n), such that if x >= a(n), then there are at least n primes between x and 2x exclusively.
This is very useful in showing the number of primes in the range [p_k, 2*p_(in)] is greater than or equal to 1. By taking into account the size of the gaps between primes in [p_(in),p_k], one can see that the average prime gap is about log(p_k) using the following R_n / (2*n) ~ log(R_n).
Proof of Corollary: See Wikipedia link
The number of primes until the next Ramanujan prime, R_(n+1), can be found in A190874.
Not the same as A124136.
A084140(n) is the smallest integer where ceiling ((A104272(n)+1)/2), a(n) is the next prime after A084140(n).  John W. Nicholson, Oct 09 2013
If a(n) is in A005382(k) then A005383(k) is a twin prime with the Ramanujan prime, A104272(n) = A005383(k)  2, and A005383(k) = A168425(n). If this sequence has an infinite number of terms in A005382, then the twin prime conjecture can be proved.  John W. Nicholson, Dec 05 2013
Except for A000101(1)=3 and A000101(2)=5, A000101(k) = a(n). Because of the large size of a gap, there are many repeats of the prime number in this sequence.  John W. Nicholson, Dec 10 2013
For some n and k, we see that a(n) = A104272(k) as to form a chain of primes similar to a Cunningham chain. For example (and the first example), a(2) = 7, links A104272(2) = 11 = a(3), links A104272(3) = 17 = a(4), links A104272(4) = 29 = a(6), links A104272(6) = 47. Note that the links do not have to be of a form like q = 2*p+1 or q = 2*p1.  John W. Nicholson, Dec 14 2013
Srinivasan's Lemma (2014): p_(kn) < (p_k)/2 if R_n = p_k and n > 1. Proof: By the minimality of R_n, the interval ((p_k)/2,p_k] contains exactly n primes, so p_(kn) < (p_k)/2.  Jonathan Sondow, May 10 2014
In spite of the name Small Associated Ramanujan Prime, a(n) is not a Ramanujan prime for many values of n.  Jonathan Sondow, May 10 2014
Prime index of a(n), pi(a(n)) = in, is equal to A179196(n)  n + 1.  John W. Nicholson, Sep 15 2015


LINKS

T. D. Noe, Table of n, a(n) for n = 1..10000
J. Sondow, Ramanujan primes and Bertrand's postulate, arXiv:0907.5232 [math.NT], 20092010; Amer. Math. Monthly 116 (2009) 630635.
J. Sondow, J. W. Nicholson, and T. D. Noe, Ramanujan Primes: Bounds, Runs, Twins, and Gaps, arXiv:1105.2249 [math.NT], 2011; J. Integer Seq. 14 (2011) Article 11.6.2.
J. Sondow, J. W. Nicholson, and T. D. Noe, Ramanujan Primes: Bounds, Runs, Twins, and Gaps, J. Integer Seq. 14 (2011) Article 11.6.2
Anitha Srinivasan, An upper bound for Ramanujan primes, Integers, 19 (2014), #A19
Wikipedia, Ramanujan Prime


FORMULA

a(n) = prime(primepi(A104272(n)) + 1  n).
a(n) = nextprime(A084139(n+1)), where nextprime(x) is the next prime > x. Note: some A084139(n) may be prime, therefore nextprime(x) not equal to x.  John W. Nicholson, Oct 11 2013
a(n) = nextprime(A084140(n)).  John W. Nicholson, Oct 11 2013


EXAMPLE

For n=10, the nth Ramanujan prime is A104272(n)= 97, the value of k = 25, so i is >= 26, in >= 16, the in prime is 53, and 2*53 = 106. This leaves the range [97, 106] for the 26th prime which is 101. In this example, 53 is the small associated Ramanujan prime.


MATHEMATICA

nn = 100;
t = Table[0, {nn}];
Do[m = PrimePi[2n]  PrimePi[n]; If[0 < m <= nn, t[[m]] = n], {n, 15 nn}];
A084139 = Join[{1}, t];
a[n_] := NextPrime[A084139[[n]]];
Array[a, nn] (* JeanFrançois Alcover, Nov 07 2018, after T. D. Noe in A084139 *)


PROG

(Perl) use ntheory ":all"; say next_prime((nth_ramanujan_prime($_)+1) >> 1) for 1..100; # Dana Jacobsen, Mar 02 2016


CROSSREFS

Cf. A000101, A005382, A005383, A084139, A084140.
Cf. A104272, A124136, A168425, A179196, A190874.
Cf. A165959 (range size), A230147 (records).
Sequence in context: A090613 A063097 A297469 * A038942 A175283 A124136
Adjacent sequences: A168418 A168419 A168420 * A168422 A168423 A168424


KEYWORD

nonn,changed


AUTHOR

John W. Nicholson, Nov 25 2009


EXTENSIONS

Extended by T. D. Noe, Nov 22 2010


STATUS

approved



