login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A179199 E.g.f. satisfies: A(x) = (1+x)/(1+2*x)*A(x+x^2) with A(0)=0. 2
0, 1, -2, 9, -64, 620, -7536, 109032, -1809984, 33562944, -681799680, 14980204800, -354016189440, 9017296704000, -249422713344000, 7530733353024000, -246212297533440000, 8509848430274150400, -302719894872204902400 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..18.

FORMULA

E.g.f. A=A(x) satisfies: x = A + A*Dx(A)/2! + A*Dx(A*Dx(A))/3! + A*Dx(A*Dx(A*Dx(A)))/4! +... where Dx(F) = d/dx(x*F).

...

a(n) = -n*(n-2)!*Sum_{i=1..n-1} C(n-i+1,i+1)*a(n-i)/(n-i)! for n>1 with a(1)=1.

...

a(n) = (-1)^(n-1)*n*A005119(n), where A005119 describes the infinitesimal generator of (x+x^2).

...

Equals column 0 of A179198, the matrix log of triangle A030528, where A030528(n,k) = C(k,n-k); the g.f. of column k in A030528 is (x+x^2)^(k+1)/x.

...

A179198(n,k) = (k+1)*a(n-k)/(n-1)! for n>0, k>=0, where A179198 = matrix log of triangle A030528.

...

EXAMPLE

E.g.f.: A(x) = x - 2*x^2/2! + 9*x^3/3! - 64*x^4/4! + 620*x^5/5! - 7536*x^6/6! + 109032*x^7/7! - 1809984*x^8/8! + 33562944*x^9/9! - 681799680*x^10/10! + 14980204800*x^11/11! - 354016189440*x^12/12! +...

E.g.f. satisfies: A(x) = (1+x)/(1+2*x)*A(x+x^2) where:

. A(x+x^2) = x - 3*x^3/3! + 20*x^4/4! - 120*x^5/5! + 624*x^6/6! - 840*x^7/7! - 58752*x^8/8! + 1512000*x^9/9! - 25660800*x^10/10! +...

E.g.f. A = A(x) satisfies:

. x = A + A*Dx(A)/2! + A*Dx(A*Dx(A))/3! + A*Dx(A*Dx(A*Dx(A)))/4! +...

where Dx(F) = d/dx(x*F) and expansions begin:

. A*Dx(A) = 4*x^2/2! - 30*x^3/3! + 288*x^4/4! - 3500*x^5/5! +-...

. A*Dx(A*Dx(A)) = 36*x^3/3! - 624*x^4/4! + 10680*x^5/5! -+...

. A*Dx(A*Dx(A*Dx(A))) = 576*x^4/4! - 18480*x^5/5! + 504000*x^6/6! -+...

. A*Dx(A*Dx(A*Dx(A*Dx(A)))) = 14400*x^5/5! - 751680*x^6/6! +-...

PROG

(PARI) /* E.g.f. satisfies: A(x) = (1+x)/(1+2*x)*A(x+x^2): */

{a(n)=local(A=x, B); for(m=2, n, B=(1+x)/(1+2*x+O(x^(n+3)))*subst(A, x, x+x^2+O(x^(n+3))); A=A-polcoeff(B, m+1)*x^m/(m-1)); n!*polcoeff(A, n)}

(PARI) /* Recurrence (slow): */

{a(n)=if(n<1, 0, if(n==1, 1, -n*(n-2)!*sum(i=1, n-1, binomial(n-i+1, i+1)*a(n-i)/(n-i)!)))}

(PARI) /* x = A + A*Dx(A)/2! + A*Dx(A*Dx(A))/3! + A*Dx(A*Dx(A*Dx(A)))/4! +...: */

{a(n)=local(A=x+sum(m=2, n-1, a(m)*x^m/m!), G=1, R=0); R=sum(m=1, n, (G=A*deriv(x*G+x*O(x^n)))/m!); if(n==1, 1, -n!*polcoeff(R, n))}

(PARI) /* As column 0 of the matrix log of triangle A030528: */

{a(n)=local(A030528=matrix(n+1, n+1, r, c, if(r>=c, binomial(c, r-c))), LOG, ID=A030528^0); LOG=sum(m=1, n+1, -(ID-A030528)^m/m); n!*LOG[n+1, 1]}

CROSSREFS

Cf. A179198, A005119, A030528.

Sequence in context: A268104 A269683 A269487 * A036775 A141209 A269770

Adjacent sequences:  A179196 A179197 A179198 * A179200 A179201 A179202

KEYWORD

eigen,sign

AUTHOR

Paul D. Hanna, Jul 09 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 07:09 EST 2017. Contains 294993 sequences.