OFFSET
1,1
COMMENTS
All numbers are intrinsic 1- and (except 1 and 2) 2-palindromes, almost all numbers are intrinsic 3-palindromes and very few numbers are intrinsic k-palindromes for k >= 4.
LINKS
Jean-François Alcover, Table of n, a(n) for n = 1..1000
A. J. Di Scala and M. Sombra, Intrinsic Palindromic Numbers, arXiv:math/0105022 [math.GM], 2001.
A. J. Di Scala and M. Sombra, Intrinsic Palindromes, Fib. Quart. 42, no. 1, Feb. 2004, pp. 76-81.
MATHEMATICA
testQ[n_, k_] := For[b = 2, b <= Ceiling[(n-1)^(1/(k-1))], b++, d = IntegerDigits[n, b]; If[Length[d] == k && d == Reverse[d], Return[True]]]; n0[k_] := 2^(k-1) + 1; Reap[Do[If[testQ[n, 3] === True, Print[n, " ", FromDigits[d], " b = ", b]; Sow[n]], {n, n0[3], 200}]][[2, 1]] (* Jean-François Alcover, Nov 07 2014 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Harvey P. Dale, May 05 2001
STATUS
approved