login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A060873
Intrinsic 3-palindromes: n is an intrinsic k-palindrome if it is a k-digit palindrome in some base.
13
5, 7, 10, 13, 16, 17, 20, 21, 23, 25, 26, 29, 31, 34, 36, 37, 38, 41, 42, 43, 46, 49, 50, 51, 52, 55, 57, 59, 61, 62, 63, 64, 65, 67, 71, 72, 73, 74, 78, 80, 81, 82, 83, 85, 86, 88, 89, 91, 92, 93, 97, 98, 100, 101, 104, 105, 107, 109, 111, 113, 114, 117, 118
OFFSET
1,1
COMMENTS
All numbers are intrinsic 1- and (except 1 and 2) 2-palindromes, almost all numbers are intrinsic 3-palindromes and very few numbers are intrinsic k-palindromes for k >= 4.
LINKS
Jean-François Alcover, Table of n, a(n) for n = 1..1000
A. J. Di Scala and M. Sombra, Intrinsic Palindromic Numbers, arXiv:math/0105022 [math.GM], 2001.
A. J. Di Scala and M. Sombra, Intrinsic Palindromes, Fib. Quart. 42, no. 1, Feb. 2004, pp. 76-81.
MATHEMATICA
testQ[n_, k_] := For[b = 2, b <= Ceiling[(n-1)^(1/(k-1))], b++, d = IntegerDigits[n, b]; If[Length[d] == k && d == Reverse[d], Return[True]]]; n0[k_] := 2^(k-1) + 1; Reap[Do[If[testQ[n, 3] === True, Print[n, " ", FromDigits[d], " b = ", b]; Sow[n]], {n, n0[3], 200}]][[2, 1]] (* Jean-François Alcover, Nov 07 2014 *)
KEYWORD
nonn,base
AUTHOR
Harvey P. Dale, May 05 2001
STATUS
approved