login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A060874
Intrinsic 4-palindromes: n is an intrinsic k-palindrome if it is a k-digit palindrome in some base.
8
9, 15, 28, 40, 52, 56, 65, 68, 80, 85, 105, 125, 126, 130, 150, 156, 170, 186, 190, 195, 215, 216, 217, 235, 246, 252, 255, 259, 282, 301, 312, 342, 343, 344, 372, 378, 385, 400, 408, 427, 434, 438, 456, 468, 476, 498, 504, 512, 513, 518, 534
OFFSET
1,1
COMMENTS
All numbers are intrinsic 1- and 2-palindromes, almost all numbers are intrinsic 3-palindromes and very few numbers are intrinsic k-palindromes for k >= 4.
LINKS
Robert Israel and Peter Kagey, Table of n, a(n) for n = 1..10000 (1..1000 from Peter Kagey)
A. J. Di Scala and M. Sombra, Intrinsic Palindromic Numbers, arXiv:math/0105022 [math.GM], 2001.
A. J. Di Scala and M. Sombra, Intrinsic Palindromes, Fib. Quart. 42, no. 1, Feb. 2004, pp. 76-81.
MAPLE
N:= 10^4: # to get all terms <= N
S:= {}:
for b from 2 to floor(N^(1/3)) do
S:= S union {seq(seq((b^3+1)*i+(b^2+b)*j, j=0..b-1), i=1..b-1)}
od:
sort(convert(select(`<=`, S, N), list)); # Robert Israel, May 23 2016
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Harvey P. Dale, May 05 2001
STATUS
approved