OFFSET
1,1
COMMENTS
All numbers are intrinsic 1- and 2-palindromes, almost all numbers are intrinsic 3-palindromes and very few numbers are intrinsic k-palindromes for k >= 4.
LINKS
Robert Israel and Peter Kagey, Table of n, a(n) for n = 1..10000 (1..1000 from Peter Kagey)
A. J. Di Scala and M. Sombra, Intrinsic Palindromic Numbers, arXiv:math/0105022 [math.GM], 2001.
A. J. Di Scala and M. Sombra, Intrinsic Palindromes, Fib. Quart. 42, no. 1, Feb. 2004, pp. 76-81.
MAPLE
N:= 10^4: # to get all terms <= N
S:= {}:
for b from 2 to floor(N^(1/3)) do
S:= S union {seq(seq((b^3+1)*i+(b^2+b)*j, j=0..b-1), i=1..b-1)}
od:
sort(convert(select(`<=`, S, N), list)); # Robert Israel, May 23 2016
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Harvey P. Dale, May 05 2001
STATUS
approved