OFFSET
1,1
COMMENTS
The generalized Lucas sequences of integer parameters (a,b) defined by U(m+2)=a*U(m+1)-b*U(m) and U(0)=0, U(1)=1, satisfy the identity
U(p-J(p,D)) == 0 (mod p) when p is prime, b=-1 and D=a^2+4.
This sequence contains the odd composite integers with U(m-J(m,D)) == 0 (mod m).
For a=5 and b=-1, we have D=29 and U(m) recovers A052918(m).
If even numbers greater than 2 that are coprime to 29 are allowed, then 26, 442, 6994, ... would also be terms. - Jianing Song, Jan 09 2021
REFERENCES
D. Andrica and O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
LINKS
Dorin Andrica, Vlad Crişan, and Fawzi Al-Thukair, On Fibonacci and Lucas sequences modulo a prime and primality testing, Arab Journal of Mathematical Sciences, 2018, 24(1), 9--15.
D. Andrica and O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math., 18, 47 (2021).
D. Andrica and O. Bagdasar, On generalized pseudoprimality of level k, Mathematics 2021, 9(8), 838.
MATHEMATICA
Select[Range[3, 28000, 2], CoprimeQ[#, 29] && CompositeQ[#] && Divisible[Fibonacci[#-JacobiSymbol[#, 29], 5], #] &]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ovidiu Bagdasar, Dec 28 2020
EXTENSIONS
Coprime condition added to definition by Georg Fischer, Jul 20 2022
STATUS
approved