login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A177043 Central MacMahon numbers: a(n)=A060187(2*n+1, n+1). 3
1, 6, 230, 23548, 4675014, 1527092468, 743288515164, 504541774904760, 455522635895576646, 527896878148304296900, 763820398700983273655796, 1349622683586635111555174216, 2859794140516672651686471055900, 7157996663278223282076538528360968 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Robert Israel, Table of n, a(n) for n = 0..201

FORMULA

a(n) ~ sqrt(3) * 2^(4*n+1) * n^(2*n) / exp(2*n). - Vaclav Kotesovec, Sep 30 2014

MAPLE

a:= n-> add((-1)^(n-i) *binomial(2*n+1, n-i) *(2*i+1)^(2*n), i=0..n):

seq(a(n), n=0..20); # Alois P. Heinz, Dec 05 2011

# With the generating function of the generalized Eulerian polynomials:

gf := proc(n, k) local f; f := (x, t) -> x*exp(t*x/k)/(1-x*exp(t*x));

series(f(x, t), t, n+2); ((1-x)/x)^(n+1)*k^n*n!*coeff(%, t, n):

collect(simplify(%), x) end: seq(coeff(gf(2*n, 2), x, n), n=0..13); # Peter Luschny, May 02 2013

MATHEMATICA

(*A060187*)

p[x_, n_]=(1-x)^(n+1)*Sum[(2*k+1)^n*x^k, {k, 0, Infinity}];

f[n_, m_]:=CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x][[m+1]];

a=Table[f[2*n, n], {n, 0, 20}]

CROSSREFS

Cf. A000108, A060187, A154420.

Sequence in context: A084070 A282736 A277293 * A309009 A117064 A112001

Adjacent sequences: A177040 A177041 A177042 * A177044 A177045 A177046

KEYWORD

nonn

AUTHOR

Roger L. Bagula, May 01 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 11:43 EST 2022. Contains 358693 sequences. (Running on oeis4.)