login
A177043
Central MacMahon numbers: a(n)=A060187(2*n+1, n+1).
4
1, 6, 230, 23548, 4675014, 1527092468, 743288515164, 504541774904760, 455522635895576646, 527896878148304296900, 763820398700983273655796, 1349622683586635111555174216, 2859794140516672651686471055900, 7157996663278223282076538528360968
OFFSET
0,2
LINKS
FORMULA
a(n) ~ sqrt(3) * 2^(4*n+1) * n^(2*n) / exp(2*n). - Vaclav Kotesovec, Sep 30 2014
MAPLE
a:= n-> add((-1)^(n-i) *binomial(2*n+1, n-i) *(2*i+1)^(2*n), i=0..n):
seq(a(n), n=0..20); # Alois P. Heinz, Dec 05 2011
# With the generating function of the generalized Eulerian polynomials:
gf := proc(n, k) local f; f := (x, t) -> x*exp(t*x/k)/(1-x*exp(t*x));
series(f(x, t), t, n+2); ((1-x)/x)^(n+1)*k^n*n!*coeff(%, t, n):
collect(simplify(%), x) end: seq(coeff(gf(2*n, 2), x, n), n=0..13); # Peter Luschny, May 02 2013
MATHEMATICA
p[x_, n_]=(1-x)^(n+1)*Sum[(2*k+1)^n*x^k, {k, 0, Infinity}];
f[n_, m_]:=CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x][[m+1]];
a=Table[f[2*n, n], {n, 0, 20}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Roger L. Bagula, May 01 2010
STATUS
approved