login
A177046
a(n) = 127*(n-1)-a(n-1) with n>1, a(1)=16.
4
16, 111, 143, 238, 270, 365, 397, 492, 524, 619, 651, 746, 778, 873, 905, 1000, 1032, 1127, 1159, 1254, 1286, 1381, 1413, 1508, 1540, 1635, 1667, 1762, 1794, 1889, 1921, 2016, 2048, 2143, 2175, 2270, 2302, 2397, 2429, 2524, 2556, 2651, 2683, 2778, 2810, 2905, 2937, 3032, 3064
OFFSET
1,1
COMMENTS
Positive numbers k such that k^2 == 2 (mod 127).
FORMULA
a(n) = (127-63*(-1)^(n-1)+254*(n-1))/4.
a(n) = a(n-1)+a(n-2)-a(n-3).
G.f.: x*(16+95*x+16*x^2) / ( (1+x)*(x-1)^2 ). - R. J. Mathar, Aug 24 2011
Sum_{n>=1} (-1)^(n+1)/a(n) = cot(16*Pi/127)*Pi/127. - Amiram Eldar, Feb 28 2023
MATHEMATICA
LinearRecurrence[{1, 1, -1}, {16, 111, 143}, 50] (* Harvey P. Dale, May 30 2014 *)
PROG
(Magma) [(127-63*(-1)^(n-1)+254*(n-1))/(4): n in [1..50]]
CROSSREFS
Sequence in context: A120668 A053526 A107908 * A234250 A240786 A213754
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Dec 09 2010
STATUS
approved