login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A177044 a(n) = 103*(n-1)-a(n-1) with n>1, a(1)=38. 5
38, 65, 141, 168, 244, 271, 347, 374, 450, 477, 553, 580, 656, 683, 759, 786, 862, 889, 965, 992, 1068, 1095, 1171, 1198, 1274, 1301, 1377, 1404, 1480, 1507, 1583, 1610, 1686, 1713, 1789, 1816, 1892, 1919, 1995, 2022, 2098, 2125, 2201, 2228, 2304, 2331, 2407, 2434, 2510, 2537 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Positive numbers n such that n^2==2 (mod 103).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (1,1,-1).

FORMULA

a(n) = (103+49*(-1)^(n-1)+206*(n-1))/4.

G.f. x*(38+27*x+38*x^2) / ( (1+x)*(x-1)^2 ). - R. J. Mathar, Aug 24 2011

MATHEMATICA

CoefficientList[Series[(38 + 27 x + 38 x^2)/((1 + x) (x - 1)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Sep 24 2014 *)

LinearRecurrence[{1, 1, -1}, {38, 65, 141}, 50] (* Harvey P. Dale, Nov 21 2021 *)

PROG

(Magma)[(103+49*(-1)^(n-1)+206*(n-1))/(4): n in [1..50]];

CROSSREFS

Sequence in context: A193568 A039466 A216140 * A321997 A343974 A335483

Adjacent sequences: A177041 A177042 A177043 * A177045 A177046 A177047

KEYWORD

nonn,easy

AUTHOR

Vincenzo Librandi, Dec 09 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 29 10:31 EST 2022. Contains 358424 sequences. (Running on oeis4.)