login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A177042 Eulerian version of the Catalan numbers, a(n) = A008292(2*n+1,n+1)/(n+1). 11
1, 2, 22, 604, 31238, 2620708, 325024572, 55942352184, 12765597850950, 3730771315561300, 1359124435588313876, 603916464771468176392, 321511316149669476991132, 202039976682357297272094824, 147980747895225006590333244088, 124963193751534047864734415925360 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

According to the Bidkhori and Sullivant reference's abstract, authors show "that the Eulerian-Catalan numbers enumerate Dyck permutations, [providing] two proofs for this fact, the first using the geometry of alcoved polytopes and the second a direct combinatorial proof via an Eulerian-Catalan analog of the Chung-Feller theorem." - Jonathan Vos Post, Jan 07 2011

Twice the number of permutations of {1,2,...,2n} with n ascents. - Peter Luschny, Jan 11 2011

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..220

F. Ardila, The Catalan matroid, J. Combin. Theory Ser. A 104 (2003) 49-62.

Hoda Bidkhori, Seth Sullivant, Eulerian-Catalan Numbers, arXiv:1101.1108 [math.CO], Jan 05 2011.

Digital Library of Mathematical Functions, Table 26.14.1

FORMULA

a(n) = 2*A180056(n) for n > 0, A180056 the central Eulerian numbers in the sense of A173018.

a(n) = A025585(n+1)/(n+1), A025585 the central Eulerian numbers in the sense of A008292.

a(n) = 2 Sum_{k=0..n} (-1)^k binomial(2n+1,k) (n-k+1)^(2n).

a(n) = (n+1)^(-1) Sum_{k=0..n} (-1)^k binomial(2n+2,k)(n+1-k)^(2n+1). - Peter Luschny, Jan 11 2011

a(n) = A008518(2n,n). - Alois P. Heinz, Jun 12 2017

From Alois P. Heinz, Jul 21 2018: (Start)

a(n) = (2n)! * [x^(2n) y^n] (exp(x)-y*exp(y*x))/(exp(y*x)-y*exp(x)).

a(n) = (2n+1)!/(n+1) * [x^(2n+1) y^(n+1)] (1-y)/(1-y*exp((1-y)*x)). (End)

MAPLE

A177042 := proc(n) A008292(2*n+1, n+1)/(n+1) ; end proc:

seq(A177042(n), n=0..10) ; # R. J. Mathar, Jan 08 2011

A177042 := n -> A025585(n+1)/(n+1):

A177042 := n -> `if`(n=0, 1, 2*A180056(n)):

# The A173018-based recursion below needs no division!

A := proc(n, k) option remember;

if n = 0 and k = 0 then 1

elif k > n or k < 0 then 0

else (n-k) *A(n-1, k-1) +(k+1) *A(n-1, k)

fi

end:

A177042 := n-> `if`(n=0, 1, 2*A(2*n, n)):

seq(A177042(n), n=0..30);

# Peter Luschny, Jan 11 2011

MATHEMATICA

<< DiscreteMath`Combinatorica`

Table[(Eulerian[2*n + 1, n])/(n + 1), {n, 0, 20}]

(* Second program: *)

A[n_, k_] := A[n, k] = Which[n == 0 && k == 0, 1, k > n || k < 0, 0, True, (n - k)*A[n - 1, k - 1] + (k + 1)*A[n - 1, k]]; A177042[n_] := If[n == 0, 1, 2*A[2*n, n]]; Table[A177042[n], {n, 0, 30}] (* Jean-François Alcover, Jul 13 2017, after Peter Luschny *)

CROSSREFS

Cf. A000108, A008518, A025585, A180056.

Bisection (odd part) of A303287.

Row sums of A316728.

Sequence in context: A120419 A217912 A210657 * A308535 A318639 A354243

Adjacent sequences: A177039 A177040 A177041 * A177043 A177044 A177045

KEYWORD

nonn

AUTHOR

Roger L. Bagula, May 01 2010

EXTENSIONS

Edited by Alois P. Heinz, Jan 14 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 10:28 EST 2022. Contains 358700 sequences. (Running on oeis4.)