login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A084070 a(n) = 38*a(n-1) - a(n-2), with a(0)=0, a(1)=6. 5
0, 6, 228, 8658, 328776, 12484830, 474094764, 18003116202, 683644320912, 25960481078454, 985814636660340, 37434995712014466, 1421544022419889368, 53981237856243781518, 2049865494514843808316, 77840907553707820934490, 2955904621546382351702304 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

This sequence gives the values of y in solutions of the Diophantine equation x^2 - 10*y^2 = 1. The corresponding x values are in A078986. - Vincenzo Librandi, Aug 08 2010 [edited by Jon E. Schoenfield, May 04 2014]

LINKS

Indranil Ghosh, Table of n, a(n) for n = 0..632

Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.

Tanya Khovanova, Recursive Sequences

Index entries for linear recurrences with constant coefficients, signature (38,-1).

FORMULA

Numbers k such that 10*k^2 = floor(k*sqrt(10)*ceiling(k*sqrt(10))).

From Mohamed Bouhamida, Sep 20 2006: (Start)

a(n) = 37*(a(n-1) + a(n-2)) - a(n-3).

a(n) = 39*(a(n-1) - a(n-2)) + a(n-3). (End)

From R. J. Mathar, Feb 19 2008: (Start)

O.g.f.: 6*x/(1 - 38*x + x^2).

a(n) = 6*A078987(n-1). (End)

a(n) = (sqrt(10)/20)*( (19 + 6*sqrt(10))^n - (19 - 6*sqrt(10))^n ), with n >= 0. - Paolo P. Lava, Jul 11 2008

a(n) = 6*ChebyshevU(n-1, 19). - G. C. Greubel, Jan 12 2020

MAPLE

seq( simplify(6*ChebyshevU(n-1, 19)), n=0..20); # G. C. Greubel, Jan 12 2020

MATHEMATICA

LinearRecurrence[{38, -1}, {0, 6}, 30] (* Harvey P. Dale, Nov 01 2011 *)

6*ChebyshevU[Range[20]-2, 19] (* G. C. Greubel, Jan 12 2020 *)

PROG

(PARI) u=0; v=6; for(n=2, 20, w=38*v-u; u=v; v=w; print1(w, ", "))

(PARI) vector(21, n, 6*polchebyshev(n-2, 2, 19) ) \\ G. C. Greubel, Jan 12 2020

(MAGMA) I:=[0, 6]; [n le 2 select I[n] else 38*Self(n-1) - Self(n-2): n in [1..20]]; // G. C. Greubel, Jan 12 2020

(Sage) [6*chebyshev_U(n-1, 19) for n in (0..20)] # G. C. Greubel, Jan 12 2020

(GAP) a:=[0, 6];; for n in [3..20] do a[n]:=38*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 12 2020

CROSSREFS

Cf. A001078, A001109, A001353, A001653, A060645, A084068, A084069, A221874.

Cf. A078986. - Vincenzo Librandi, Apr 14 2010

Sequence in context: A166502 A173083 A338297 * A282736 A277293 A177043

Adjacent sequences:  A084067 A084068 A084069 * A084071 A084072 A084073

KEYWORD

nonn

AUTHOR

Benoit Cloitre, May 10 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 6 20:37 EST 2021. Contains 341850 sequences. (Running on oeis4.)