login
A161581
a(n) = (3n)!/(n!(n+1)!(n+2)!).
3
21, 231, 3003, 43758, 692835, 11685817, 207157665, 3823000545, 72931087320, 1430571328200, 28734046963560, 589047962752980, 12292044987448215, 260543149635912165, 5599392250947235125, 121830987186399315825
OFFSET
3,1
COMMENTS
3-d analog of the Catalan numbers A000108.
LINKS
Eric Weisstein's World of Mathematics, Binomial Sums.
Eric Weisstein's World of Mathematics, Central Binomial Coefficient.
Eric Weisstein's World of Mathematics, Catalan Number.
FORMULA
a(n) = A006480(n)/((n+1)^2*(n+2)).
a(n) ~ 3^(3*n + 1/2) / (2*Pi*n^4). - Vaclav Kotesovec, Feb 21 2023
a(n) = (1/2)*A005789(n) for n >= 3. - Peter Bala, Mar 01 2023
D-finite with recurrence (n+2)*(n+1)*a(n) -3*(3*n-1)*(3*n-2)*a(n-1)=0. - R. J. Mathar, Nov 22 2024
MAPLE
A161581 := proc(n) (3*n)!/n!/(n+1)!/(n+2)! ; end: seq(A161581(n), n=3..40) ; # R. J. Mathar, Jun 16 2009
a := proc (n) options operator, arrow: factorial(3*n)/(factorial(n)*factorial(n+1)*factorial(n+2)) end proc: seq(a(n), n = 3 .. 20); # Emeric Deutsch, Jun 14 2009
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Alexander Adamchuk, Jun 14 2009
EXTENSIONS
Repetitions of information contained in other sequences removed by R. J. Mathar, Jun 16 2009
More terms from Emeric Deutsch, Jun 14 2009
STATUS
approved