This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A161583 The list of the k values in the common solutions to the 2 equations 15*k+1=A^2, 19*k+1=B^2. 3
 0, 17, 4896, 1405152, 403273745, 115738159680, 33216448554432, 9533004996962321, 2735939217679631712, 785205022469057339040, 225351105509401776672785, 64674982076175840847750272, 18561494504756956921527655296, 5327084247883170460637589319697 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The 2 equations are equivalent to the Pell equation x^2-285*y^2=1, with x=(285*k+17)/2 and y=A*B/2, case C=15 in A160682. LINKS FORMULA k(t+3)=288*(k(t+2)-k(t+1))+k(t). k(t)=((17+w)*((287+17*w)/2)^(t-1)+(17-w)*((287-17*w)/2)^(t-1))/570 where w=sqrt(285). k(t) = floor of ((17+w)*((287+17*w)/2)^(t-1))/570; G.f.: -17*x^2/((x-1)*(x^2-287*x+1)). MAPLE t:=0: for n from 0 to 1000000 do a:=sqrt(15*n+1): b:=sqrt(19*n+1): if (trunc(a)=a) and (trunc(b)=b) then t:=t+1: print(t, n, a, b): end if: end do: CROSSREFS Cf. A160682, A161595 (sequence of A), A161599 (sequence of B) Sequence in context: A194015 A015058 A015034 * A013722 A238610 A052286 Adjacent sequences:  A161580 A161581 A161582 * A161584 A161585 A161586 KEYWORD nonn AUTHOR Paul Weisenhorn, Jun 14 2009 EXTENSIONS Edited, extended by R. J. Mathar, Sep 02 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 16 21:37 EST 2019. Contains 319206 sequences. (Running on oeis4.)