login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159965
Riordan array (1/sqrt(1-4x), (1-2x-(1-3x)c(x))/(x*sqrt(1-4x))), c(x) the g.f. of A000108.
3
1, 2, 1, 6, 5, 1, 20, 21, 8, 1, 70, 84, 45, 11, 1, 252, 330, 220, 78, 14, 1, 924, 1287, 1001, 455, 120, 17, 1, 3432, 5005, 4368, 2380, 816, 171, 20, 1, 12870, 19448, 18564, 11628, 4845, 1330, 231, 23, 1, 48620, 75582, 77520, 54264, 26334, 8855, 2024, 300, 26, 1
OFFSET
0,2
COMMENTS
Product of A007318 and A114422. Product of A007318^2 and A116382. Row sums are A108080.
Diagonal sums are A108081.
Riordan array (1/sqrt(1 - 4*x), x*c(x)^3) obtained from A092392 by taking every third column starting from column 0; x*c(x)^3 is the o.g.f. for A000245. - Peter Bala, Nov 24 2015
FORMULA
Number triangle T(n,k) = Sum_{j = 0..n} binomial(n+k,j-k)*binomialC(n,j).
T(n,k) = binomial(2*n + k, n + 2*k). - Peter Bala, Nov 24 2015
EXAMPLE
Triangle begins
1,
2, 1,
6, 5, 1,
20, 21, 8, 1,
70, 84, 45, 11, 1,
252, 330, 220, 78, 14, 1,
924, 1287, 1001, 455, 120, 17, 1,
3432, 5005, 4368, 2380, 816, 171, 20, 1
PROG
(Magma) /* As triangle */ [[Binomial(2*n+k, n+2*k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Nov 27 2015
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Apr 28 2009
STATUS
approved