login
A159968
Numerator of Hermite(n, 11/24).
1
1, 11, -167, -8173, 54385, 10013531, 31834441, -16953202717, -250663462943, 36302880967595, 1049051386591801, -93012731934163789, -4346534843998627247, 273640118280485155067, 19283467757016197118505, -891198811579737976926589, -93107767637687089298134079
OFFSET
0,2
LINKS
FORMULA
From G. C. Greubel, Jul 16 2018: (Start)
a(n) = 12^n * Hermite(n, 11/24).
E.g.f.: exp(11*x - 144*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(11/12)^(n-2*k)/(k!*(n-2*k)!)). (End)
EXAMPLE
Numerators of 1, 11/12, -167/144, -8173/1728, 54385/20736, ...
MATHEMATICA
Numerator[HermiteH[Range[0, 20], 11/24]] (* Harvey P. Dale, Mar 27 2013 *)
Table[12^n*HermiteH[n, 11/12], {n, 0, 30}] (* G. C. Greubel, Jul 16 2018 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 11/24)) \\ Charles R Greathouse IV, Jan 29 2016
(PARI) x='x+O('x^30); Vec(serlaplace(exp(11*x - 144*x^2))) \\ G. C. Greubel, Jul 16 2018
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(11/12)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 16 2018
CROSSREFS
Cf. A001021 (denominators).
Sequence in context: A075141 A088293 A145559 * A059091 A255971 A157944
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved