login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A159967 Numerator of Hermite(n, 7/24). 1
1, 7, -239, -5705, 166561, 7738087, -185681231, -14671182953, 271635081025, 35703851090887, -454151172380591, -106006149348418697, 696707868662781409, 371234207228774486695, -9834809672032188431, -1496885167214122955673257, -10435709792715681635690879 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..428

FORMULA

From G. C. Greubel, Jul 16 2018: (Start)

a(n) = 12^n * Hermite(n, 7/24).

E.g.f.: exp(7*x - 144*x^2).

a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(7/12)^(n-2*k)/(k!*(n-2*k)!)). (End)

EXAMPLE

Numerators of 1, 7/12, -239/144, -5705/1728, 166561/20736, ...

MATHEMATICA

Numerator[HermiteH[Range[0, 20], 7/24]] (* Harvey P. Dale, Jan 27 2012 *)

Table[12^n*HermiteH[n, 7/12], {n, 0, 30}] (* G. C. Greubel, Jul 16 2018 *)

PROG

(PARI) a(n)=numerator(polhermite(n, 7/24)) \\ Charles R Greathouse IV, Jan 29 2016

(PARI) x='x+O('x^30); Vec(serlaplace(exp(7*x - 144*x^2))) \\ G. C. Greubel, Jul 16 2018

(MAGMA) [Numerator((&+[(-1)^k*Factorial(n)*(7/12)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 16 2018

CROSSREFS

Cf. A001021 (denominators).

Sequence in context: A160491 A120661 A185389 * A139057 A251594 A210248

Adjacent sequences:  A159964 A159965 A159966 * A159968 A159969 A159970

KEYWORD

sign,frac

AUTHOR

N. J. A. Sloane, Nov 12 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 26 16:43 EDT 2020. Contains 337374 sequences. (Running on oeis4.)