login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A159562 Numerator of Hermite(n, 13/18). 1
1, 13, 7, -4121, -56975, 1929733, 71236279, -949628849, -93127115423, 20066487805, 136040198628199, 1736014871922487, -219855440620458287, -6232933639083272459, 381987420638602610455, 19102129961742695872927, -679901742649149297057599 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..450

FORMULA

From G. C. Greubel, Jul 14 2018: (Start)

a(n) = 9^n * Hermite(n, 13/18).

E.g.f.: exp(13*x - 81*x^2).

a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(13/9)^(n-2*k)/(k!*(n-2*k)!)). (End)

MATHEMATICA

Numerator[Table[HermiteH[n, 13/18], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, May 20 2011 *)

Table[9^n*HermiteH[n, 13/18], {n, 0, 30}] (* G. C. Greubel, Jul 14 2018 *)

PROG

(PARI) a(n)=numerator(polhermite(n, 13/18)) \\ Charles R Greathouse IV, Jan 29 2016

(PARI) x='x+O('x^30); Vec(serlaplace(exp(13*x - 81*x^2))) \\ G. C. Greubel, Jul 14 2018

(MAGMA) [Numerator((&+[(-1)^k*Factorial(n)*(13/9)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 14 2018

CROSSREFS

Cf. A159545, A159546.

Sequence in context: A298085 A177427 A110056 * A249024 A076116 A010216

Adjacent sequences:  A159559 A159560 A159561 * A159563 A159564 A159565

KEYWORD

sign,frac

AUTHOR

N. J. A. Sloane, Nov 12 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 23:29 EST 2019. Contains 329910 sequences. (Running on oeis4.)