login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A159545 Numerator of Hermite(n, 1/18). 7
1, 1, -161, -485, 77761, 392041, -62594369, -443658221, 70538356225, 645519410641, -102199403965409, -1147940849203829, 180971397017155009, 2412568407869398585, -378713193710259050369, -5850418342758055041149, 914422642373171437355521 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..450

FORMULA

From G. C. Greubel, Jun 09 2018: (Start)

a(n) = 9^n * Hermite(n,1/18).

E.g.f.: exp(x-81*x^2).

a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(1/9)^(n-2*k)/(k!*(n-2*k)!)). (End)

MATHEMATICA

Numerator[Table[HermiteH[n, 1/18], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, May 20 2011 *)

PROG

(PARI) a(n)=numerator(polhermite(n, 1/18)) \\ Charles R Greathouse IV, Jan 29 2016

(MAGMA) [Numerator((&+[(-1)^k*Factorial(n)*(1/9)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jun 09 2018

CROSSREFS

Cf. A159542, A159543, A159544.

Sequence in context: A060641 A209282 A157954 * A157337 A200869 A200883

Adjacent sequences:  A159542 A159543 A159544 * A159546 A159547 A159548

KEYWORD

sign,frac

AUTHOR

N. J. A. Sloane, Nov 12 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 13:50 EST 2019. Contains 329877 sequences. (Running on oeis4.)