This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A177427 Numerators of the Inverse Akiyama-Tanigawa transform of the aerated even-indexed Bernoulli numbers 1, 0, 1/6, 0, -1/30, 0, 1/42,... 6
 1, 1, 13, 7, 149, 157, 383, 199, 7409, 7633, 86231, 88331, 1173713, 1197473, 1219781, 620401, 42862943, 43503583, 279379879, 283055551, 57313183, 19328341, 449489867, 1362695813, 34409471059, 34738962067, 315510823603, 45467560829, 9307359944587, 9382319148907, 293103346860157, 147643434162641, 594812856101039, 54448301591149 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS These are the numerators of the first row of a Table T(n,k) which contains the even-indexed Bernoulli numbers in the first column: T(2n,0) = A000367(n)/A002445(n), T(2n+1,0)=0, and which generates rows with the Akiyama-Tanigawa transform. (Because the first column is given, the algorithm is an inverse Akiyama-Tanigawa transform.) These are the absolute values of the numerators of the Taylor expansion of sinh(log(x+1))*log(x+1)at x=0. - Gary Detlefs, Aug 31 2011 LINKS L. A. Medina, V. H. Moll, E. S. Rowland, Iterated primitives of logarithmic powers, arXiv:0911.1325, arXiv:0911.1325 [math.NT], 2009-2010. D. Merlini, R. Sprugnoli, M. C. Verri, The Akiyama-Tanigawa Transformation, Integers, 5 (1) (2005) #A05. FORMULA T(0,k) = H(k)/2+1/(k+1) with H(k) harmonic number of order k. - Roland Groux, Jan 07 2011 T(0,k)= -(1/2)*(k+1)*int(x^n*log(x*(1-x)),x=0..1). - Roland Groux, Jan 07 2011 G.f.: sum_{k>=0} T(0,k) x^k = (x-2)*(log(1-x))/(2*x*(1-x)). - Roland Groux, Jan 07 2011 T(1,n) = -A191567(n)/A061038(n+2) = -A060819(n)/A145979(n). - Paul Curtz, Jul 19 2011 (T(1,n))^2 = A181318(n)/A061038(n+2). - Paul Curtz, Jul 19 2011, index corrected by R. J. Mathar, Sep 09 2011 EXAMPLE The table T(n,k) of fractions generated by the Akiyama-Tanigawa transform, with the column T(n,0) equal to bernoulli(n) for even n and equal to 0 for odd n, starts in row n=0 as: 1, 1, 13/12, 7/6, 149/120, 157/120, 383/280, 199/140,... 0, -1/6, -1/4, -3/10, -1/3, -5/14, -3/8, -7/18, -2/5, -9/22,... 1/6, 1/6, 3/20, 2/15, 5/42, 3/28, 7/72, 4/45, 9/110, 5/66,.. 0, 1/30, 1/20, 2/35, 5/84, 5/84, 7/120, 28/495, 3/55, 15/286, ... -1/30, -1/30, -3/140, -1/105, 0, 1/140, 49/3960, 8/495,.. 0, -1/42, -1/28, -4/105, -1/28, -29/924, -7/264, -28/1287, -87/5005, ... 1/42, 1/42, 1/140, -1/105, -5/231, -9/308, -343/10296, -1576/45045, ... MATHEMATICA t[n_, 0] := BernoulliB[n]; t[1, 0]=0; t[n_, k_] := t[n, k] = (t[n, k-1] + (k-1)*t[n, k-1] - t[n+1, k-1])/k; Table[t[0, k], {k, 0, 33}] // Numerator (* Jean-François Alcover, Aug 09 2012 *) CROSSREFS Cf. A177690 (denominators). Sequence in context: A298928 A152142 A298085 * A110056 A159562 A249024 Adjacent sequences:  A177424 A177425 A177426 * A177428 A177429 A177430 KEYWORD nonn,frac AUTHOR Paul Curtz, May 07 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 25 22:27 EDT 2019. Contains 324364 sequences. (Running on oeis4.)