login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A177427 Numerators of the Inverse Akiyama-Tanigawa transform of the aerated even-indexed Bernoulli numbers 1, 0, 1/6, 0, -1/30, 0, 1/42,... 5
1, 1, 13, 7, 149, 157, 383, 199, 7409, 7633, 86231, 88331, 1173713, 1197473, 1219781, 620401, 42862943, 43503583, 279379879, 283055551, 57313183, 19328341, 449489867, 1362695813, 34409471059, 34738962067, 315510823603, 45467560829, 9307359944587, 9382319148907, 293103346860157, 147643434162641, 594812856101039, 54448301591149 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

These are the numerators of the first row of a Table T(n,k) which contains the even-indexed Bernoulli numbers in the first column: T(2n,0) = A000367(n)/A002445(n), T(2n+1,0)=0, and which generates rows with the Akiyama-Tanigawa transform. (Because the first column is given, the algorithm is an inverse Akiyama-Tanigawa transform.)

These are the absolute values of the numerators of the Taylor expansion of sinh(log(x+1))*log(x+1)at x= 0.[Gary Detlefs, Aug 31 2011]

REFERENCES

D. Merlini, R. Sprugnoli, M. C. Verri, The Akiyama-Tanigawa Transformation, Integers, 5 (1) (2005) #A05

LINKS

Table of n, a(n) for n=0..33.

L. A. Medina, V. H. Moll, E. S. Rowland, Iterated primitives of logarithmic powers, arXiv:0911.1325

FORMULA

T(0,k) = H(k)/2+1/(k+1) with H(k) harmonic number of order k. - Roland Groux, Jan 07 2011

T(0,k)= -(1/2)*(k+1)*int(x^n*ln(x*(1-x)),x=0..1). - Roland Groux, Jan 07 2011

G.f.: sum_{k>=0} T(0,k) x^k = (x-2)*(log(1-x))/(2*x*(1-x)). - Roland Groux, Jan 07 2011

T(1,n) = -A191567(n)/A061038(n+2) = -A060819(n)/A145979(n). - Paul Curtz, Jul 19 2011

(T(1,n))^2 = A181318(n)/A061038(n+2). - Paul Curtz, Jul 19 2011, index corrected by R. J. Mathar, Sep 09 2011

EXAMPLE

The table T(n,k) of fractions generated by the Akiyama-Tanigawa transform, with the column T(n,0) equal to bernoulli(n) for even n and equal to 0 for odd n, starts in row n=0 as:

1, 1, 13/12, 7/6, 149/120, 157/120, 383/280, 199/140,...

0, -1/6, -1/4, -3/10, -1/3, -5/14, -3/8, -7/18, -2/5, -9/22,...

1/6, 1/6, 3/20, 2/15, 5/42, 3/28, 7/72, 4/45, 9/110, 5/66,..

0, 1/30, 1/20, 2/35, 5/84, 5/84, 7/120, 28/495, 3/55, 15/286, ...

-1/30, -1/30, -3/140, -1/105, 0, 1/140, 49/3960, 8/495,..

0, -1/42, -1/28, -4/105, -1/28, -29/924, -7/264, -28/1287, -87/5005, ...

1/42, 1/42, 1/140, -1/105, -5/231, -9/308, -343/10296, -1576/45045, ...

MATHEMATICA

t[n_, 0] := BernoulliB[n]; t[1, 0]=0; t[n_, k_] := t[n, k] = (t[n, k-1] + (k-1)*t[n, k-1] - t[n+1, k-1])/k; Table[t[0, k], {k, 0, 33}] // Numerator (* Jean-Fran├žois Alcover, Aug 09 2012 *)

CROSSREFS

Cf. A177690 (denominators).

Sequence in context: A217518 A206611 A152142 * A110056 A159562 A249024

Adjacent sequences:  A177424 A177425 A177426 * A177428 A177429 A177430

KEYWORD

nonn,frac

AUTHOR

Paul Curtz, May 07 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 19 08:21 EST 2014. Contains 252186 sequences.