login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A159546 Numerator of Hermite(n, 5/18). 5
1, 5, -137, -2305, 55057, 1768925, -35751545, -1898152825, 31051487905, 2615263500725, -32196751861865, -4397710630483825, 35386058665424305, 8726079758987677325, -30892640754445199705, -19945212097156278171625, -24656943452479555574975 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..450

FORMULA

From G. C. Greubel, Jun 10 2018: (Start)

a(n) = 9^n * Hermite(n,5/18).

E.g.f.: exp(5*x-81*x^2).

a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(5/9)^(n-2*k)/(k!*(n-2*k)!)). (End)

MATHEMATICA

Numerator[Table[HermiteH[n, 5/18], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, May 20 2011 *)

PROG

(PARI) a(n)=numerator(polhermite(n, 5/18)) \\ Charles R Greathouse IV, Jan 29 2016

(MAGMA) [Numerator((&+[(-1)^k*Factorial(n)*(5/9)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jun 10 2018

CROSSREFS

Cf. A159545.

Sequence in context: A279307 A265875 A248523 * A012215 A012142 A012207

Adjacent sequences:  A159543 A159544 A159545 * A159547 A159548 A159549

KEYWORD

sign,frac

AUTHOR

N. J. A. Sloane, Nov 12 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 14 07:03 EST 2019. Contains 329978 sequences. (Running on oeis4.)