login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A159563 Numerator of Hermite(n, 17/18). 2
1, 17, 127, -3349, -118655, 153017, 98711839, 1529368739, -85939956863, -3443041152415, 66768757515199, 6712795544670683, -4864401632683007, -13132369366595418871, -213005849393691708065, 26163114283745650962323, 962377156850346916957441 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..450

FORMULA

From G. C. Greubel, Jun 02 2018: (Start)

a(n) = 9^n * Hermite(n, 17/18).

E.g.f.: exp(17*x - 81*x^2).

a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(17/9)^(n-2*k)/(k!*(n-2*k)!)). (End)

MATHEMATICA

Numerator[Table[HermiteH[n, 17/18], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, May 20 2011 *)

Table[9^n*HermiteH[n, 17/18], {n, 0, 50}] (* G. C. Greubel, Jul 10 2018 *)

PROG

(PARI) a(n)=numerator(polhermite(n, 17/18)) \\ Charles R Greathouse IV, Jan 29 2016

(MAGMA) [Numerator((&+[(-1)^k*Factorial(n)*(17/9)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 10 2018

CROSSREFS

Cf. A159545, A159546.

Sequence in context: A066453 A298838 A114756 * A229516 A279637 A179818

Adjacent sequences:  A159560 A159561 A159562 * A159564 A159565 A159566

KEYWORD

sign,frac

AUTHOR

N. J. A. Sloane, Nov 12 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 13 22:53 EST 2019. Contains 329974 sequences. (Running on oeis4.)