login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A159564 Numerator of Hermite(n, 1/19). 9
1, 2, -718, -4324, 1546540, 15580792, -5551847816, -78599686576, 27901839488912, 509795468640800, -180286562061668576, -4041296407709913152, 1423753283078352004288, 37861298642555391557504, -13287625717688301129132160, -409277258114326500121514752 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..397

FORMULA

From G. C. Greubel, Jun 02 2018: (Start)

a(n) = 19^n * Hermite(n,1/19).

E.g.f.: exp(2*x-281*x^2).

a(n) = Sum_{k=0..floor(n/2)} (-1)^k*n!*(2/19)^(n-2k)/(k!*(n-2k)!). (End)

MATHEMATICA

Numerator[Table[HermiteH[n, 1/19], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, May 20 2011 *)

PROG

(PARI) a(n)=numerator(polhermite(n, 1/19)) \\ Charles R Greathouse IV, Jan 29 2016

(MAGMA) [Numerator((&+[(-1)^k*Factorial(n)*(2/19)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jun 02 2018

CROSSREFS

Cf. A159545, A159563.

Sequence in context: A064976 A062665 A256669 * A185667 A119781 A028367

Adjacent sequences:  A159561 A159562 A159563 * A159565 A159566 A159567

KEYWORD

sign,frac

AUTHOR

N. J. A. Sloane, Nov 12 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 08:53 EST 2019. Contains 329788 sequences. (Running on oeis4.)