login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A152939 Number of sets (in the Hausdorff metric geometry) at each location between two sets defining a polygonal configuration consisting of four 4-gonal polygonal components chained with string components of length l as l varies. 0
29153, 109649, 486385, 2024613, 8634049, 36481021, 154687133, 655020765, 2775107981, 11754906113 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

REFERENCES

S. Schlicker, L. Morales, D. Schultheis, Polygonal chain sequences in the space of compact sets, J. Integer Seq. 12 (2009), no. 1, Article 09.1.7, 23 pp.

LINKS

Table of n, a(n) for n=1..10.

MAPLE

with(combinat): a := proc(n) local aa, b, c, d, lambda, delta, R, S, F, L, k, m: k:=4: m:=2: F := t -> fibonacci(t): L := t -> fibonacci(t-1)+fibonacci(t+1): aa := (m, n) -> L(2*m)*F(n-2)+F(2*m+2)*F(n-1): b := (m, n) -> L(2*m)*F(n-1)+F(2*m+2)*F(n): c := (m, n) -> F(2*m+2)*F(n-2)+F(m+2)^2*F(n-1): d := (m, n) -> F(2*m+2)*F(n-1)+F(m+2)^2*F(n): lambda := (m, n) -> (d(m, n)+aa(m, n)+sqrt((d(m, n)-aa(m, n))^2+4*b(m, n)*c(m, n)))*(1/2): delta := (m, n) -> (d(m, n)+aa(m, n)-sqrt((d(m, n)-aa(m, n))^2+4*b(m, n)*c(m, n)))*(1/2): R := (m, n) -> ((lambda(m, n)-d(m, n))*L(2*m)+b(m, n)*F(2*m+2))/(2*lambda(m, n)-d(m, n)-aa(m, n)): S := (m, n) -> ((lambda(m, n)-aa(m, n))*L(2*m)-b(m, n)*F(2*m+2))/(2*lambda(m, n)-d(m, n)-aa(m, n)): simplify(R(m, n)*lambda(m, n)^(k-1)+S(m, n)*delta(m, n)^(k-1)); end proc;

CROSSREFS

Cf. A152927, A152928, A152929, A152930, A152931, A152932, A152933, A152934

Sequence in context: A257391 A015313 A242741 * A028462 A252860 A206470

Adjacent sequences:  A152936 A152937 A152938 * A152940 A152941 A152942

KEYWORD

nonn

AUTHOR

Steven Schlicker (schlicks(AT)gvsu.edu), Dec 15 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 21 07:23 EDT 2019. Contains 321367 sequences. (Running on oeis4.)