The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A152934 Number of sets (in the Hausdorff metric geometry) at each location between two sets defining a polygonal configuration consisting of two m-gonal polygonal components chained with string components of length 3 as m varies. 47
 289, 1962, 13429, 92025, 630730, 4323069, 29630737, 203092074, 1392013765, 9541004265, 65395016074, 448224108237, 3072173741569, 21056992082730, 144326770837525, 989230403779929, 6780286055621962, 46472771985573789, 318529117843394545, 2183231052918188010 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,1 LINKS S. Schlicker, L. Morales, and D. Schultheis, Polygonal chain sequences in the space of compact sets, J. Integer Seq. 12 (2009), no. 1, Article 09.1.7, 23 pp. FORMULA Conjectures from Colin Barker, Jul 09 2020: (Start) G.f.: x^2*(289 - 350*x + 45*x^2) / ((1 - x)*(1 - 7*x + x^2)). a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3) for n>4. (End) MAPLE with(combinat): a := proc(n) local aa, b, c, d, lambda, delta, R, S, F, L, k, l: k:=2: l:=3: F := t -> fibonacci(t): L := t -> fibonacci(t-1)+fibonacci(t+1): aa := (n, l) -> L(2*n)*F(l-2)+F(2*n+2)*F(l-1): b := (n, l) -> L(2*n)*F(l-1)+F(2*n+2)*F(l): c := (n, l) -> F(2*n+2)*F(l-2)+F(n+2)^2*F(l-1): d := (n, l) -> F(2*n+2)*F(l-1)+F(n+2)^2*F(l): lambda := (n, l) -> (d(n, l)+aa(n, l)+sqrt((d(n, l)-aa(n, l))^2+4*b(n, l)*c(n, l)))*(1/2): delta := (n, l) -> (d(n, l)+aa(n, l)-sqrt((d(n, l)-aa(n, l))^2+4*b(n, l)*c(n, l)))*(1/2): R := (n, l) -> ((lambda(n, l)-d(n, l))*L(2*n)+b(n, l)*F(2*n+2))/(2*lambda(n, l)-d(n, l)-aa(n, l)): S := (n, l) -> ((lambda(n, l)-aa(n, l))*L(2*n)-b(n, l)*F(2*n+2))/(2*lambda(n, l)-d(n, l)-aa(n, l)): simplify(R(n, l)*lambda(n, l)^(k-1)+S(n, l)*delta(n, l)^(k-1)); end proc; CROSSREFS Cf. A152927, A152928, A152929, A152930, A152931, A152932, A152933, A152935. Sequence in context: A218766 A188186 A112077 * A332737 A156575 A296404 Adjacent sequences: A152931 A152932 A152933 * A152935 A152936 A152937 KEYWORD nonn AUTHOR Steven Schlicker, Dec 15 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 1 08:04 EST 2023. Contains 359981 sequences. (Running on oeis4.)