login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A152938 A vector recursion designed around a factorial row sum : v(n)=if[odd,{1.n,n^2,...,(n+1)!/2-Sum[2^m,{m,0,n/2-1}],(n+1)!/2-Sum2^m,{m,0,n/2-1}],...n^2.n,1}],if[ even{1.n,n^2,...,(n+1)!-2Sum[2^m,{m,0,n/2-1}],...n^2.n,1}]. 0
1, 1, 1, 1, 4, 1, 1, 11, 11, 1, 1, 4, 110, 4, 1, 1, 5, 354, 354, 5, 1, 1, 6, 36, 4954, 36, 6, 1, 1, 7, 49, 20103, 20103, 49, 7, 1, 1, 8, 64, 512, 361710, 512, 64, 8, 1, 1, 9, 81, 729, 1813580, 1813580, 729, 81, 9, 1, 1, 10, 100, 1000, 10000, 39894578, 10000, 1000, 100 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Row sums are:

{1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800,...}.

This designed symmetrical triangle is meant to be like the Eulerian numbers

in row sum ( the Stirling numbers of the first kind also have factorial row sums).

LINKS

Table of n, a(n) for n=0..63.

FORMULA

v(n)=if[odd,{1.n,n^2,...,(n+1)!/2-Sum[2^m,{m,0,n/2-1}],(n+1)!/2-Sum2^m,{m,0,n/2-1}],...n^2.n,1}],

if[ even{1.n,n^2,...,(n+1)!-2Sum[2^m,{m,0,n/2-1}],...n^2.n,1}].

EXAMPLE

{1},

{1, 1},

{1, 4, 1},

{1, 11, 11, 1},

{1, 4, 110, 4, 1},

{1, 5, 354, 354, 5, 1},

{1, 6, 36, 4954, 36, 6, 1},

{1, 7, 49, 20103, 20103, 49, 7, 1},

{1, 8, 64, 512, 361710, 512, 64, 8, 1},

{1, 9, 81, 729, 1813580, 1813580, 729, 81, 9, 1},

{1, 10, 100, 1000, 10000, 39894578, 10000, 1000, 100, 10, 1}

MATHEMATICA

Clear[v, n]; v[0] = {1}; v[1] = {1, 1};

v[n_] := v[n] = If[Mod[n, 2] == 0, Join[Table[ n^m, {m, 0, Floor[n/2] - 1}], {(n+1)! - 2*Sum[ n^m, {m, 0, Floor[n/2] - 1}]}, Table[ n^m, {m, Floor[n/2] - 1, 0, -1}]],

Join[Table[ n^m, {m, 0, Floor[n/2] - 1}], {(n+1)!/2 - Sum[ n^m, {m, 0, Floor[n/2] - 1}], (n+1)!/2 - Sum[ n^m, {m, 0, Floor[n/2] - 1}]}, Table[ n^m, {m, Floor[n/2] - 1, 0, -1}]]]'

Table[v[n], {n, 0, 10}];

Flatten[%]

CROSSREFS

Sequence in context: A087903 A287532 A112500 * A154096 A146898 A152970

Adjacent sequences:  A152935 A152936 A152937 * A152939 A152940 A152941

KEYWORD

nonn,tabl

AUTHOR

Roger L. Bagula, Dec 15 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 19 12:53 EST 2019. Contains 320310 sequences. (Running on oeis4.)