login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A152928 Number of sets (in the Hausdorff metric geometry) at each location between two sets defining a polygonal configuration consisting of two m-gonal polygonal components chained with string components of length 1 as m varies. 8
113, 765, 5234, 35865, 245813, 1684818, 11547905, 79150509, 542505650, 3718389033, 25486217573, 174685133970, 1197309720209, 8206482907485, 56248070632178, 385530011517753, 2642462009992085, 18111704058426834, 124139466398995745, 850864560734543373 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,1

REFERENCES

S. Schlicker, L. Morales, D. Schultheis, Polygonal chain sequences in the space of compact sets, J. Integer Seq. 12 (2009), no. 1, Article 09.1.7, 23 pp.

LINKS

Table of n, a(n) for n=2..21.

FORMULA

G.f.: x^2*(113 - 139*x + 18*x^2)/(1 - 8*x + 8*x^2 - x^3). - M. F. Hasler, Apr 16 2015

MAPLE

with(combinat): a := proc(n) local aa, b, c, d, lambda, delta, Q, F, L:  F := fibonacci: L := t -> fibonacci(t-1)+fibonacci(t+1): aa := L(2*n)*F(l-2)+F(2*n+2)*F(l-1): b := L(2*n)*F(l-1)+F(2*n+2)*F(l): c :=  F(2*n+2)*F(l-2)+F(n+2)^2*F(l-1): d := F(2*n+2)*F(l-1)+F(n+2)^2*F(l): Q:=sqrt((d-aa)^2+4*b*c); lambda := (d+aa+Q)/2: delta := (d+aa-Q)/2: : simplify(lambda*((lambda-d)*L(2*n)+b*F(2*n+2))/Q+delta*((lambda-aa)*L(2*n)-b*F(2*n+2))/Q); end proc; # Simplified by M. F. Hasler, Apr 16 2015

CROSSREFS

Cf. A152927, A152929, A152930, A152931, A152932, A152933, A152934, A152935

Sequence in context: A300964 A077287 A087294 * A185337 A300921 A075030

Adjacent sequences:  A152925 A152926 A152927 * A152929 A152930 A152931

KEYWORD

nonn

AUTHOR

Steven Schlicker (schlicks(AT)gvsu.edu), Dec 15 2008

EXTENSIONS

More terms from M. F. Hasler, Apr 16 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 12 05:52 EST 2019. Contains 329051 sequences. (Running on oeis4.)