login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144390
a(n) = 3*n^2 - n - 1.
11
1, 9, 23, 43, 69, 101, 139, 183, 233, 289, 351, 419, 493, 573, 659, 751, 849, 953, 1063, 1179, 1301, 1429, 1563, 1703, 1849, 2001, 2159, 2323, 2493, 2669, 2851, 3039, 3233, 3433, 3639, 3851, 4069, 4293, 4523, 4759, 5001, 5249, 5503, 5763, 6029, 6301, 6579
OFFSET
1,2
COMMENTS
Sequence's original Name was "First bisection of A135370."
The partial sums of this sequence give A081437. - Leo Tavares, Dec 26 2021
FORMULA
a(n+1) = a(n) + 6*n + 2; see A016933.
G.f.: x*(1+6*x-x^2)/(1-x)^3. a(n) = A049450(n)-1. - R. J. Mathar, Oct 24 2008
a(-n) = A144391(n). - Michael Somos, Mar 27 2014
E.g.f.: (3*x^2 + 2*x -1)*exp(x) + 1. - G. C. Greubel, Jul 19 2017
From Leo Tavares, Dec 26 2021: (Start)
a(n) = A003215(n) - 2*A005408(n). See Bounded Hexagons illustration.
a(n) = A016754(n-1) - A002378(n-2). (End)
a(n) = A003154(n) - A049451(n-1). - John Elias, Dec 22 2022
MAPLE
A144390:=n->3*n^2-n-1; seq(A144390(n), n=1..50); # Wesley Ivan Hurt, Mar 26 2014
MATHEMATICA
Table[3*n^2 -n -1 , {n, 0, 50}] (* G. C. Greubel, Jul 19 2017 *)
PROG
(Magma) [3*n^2-n-1: n in [1..60]]; // Vincenzo Librandi, Jun 14 2011
(PARI) a(n)=3*n^2-n-1 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
Cf. A081437 (partial sums).
Sequence in context: A054302 A147395 A302906 * A024843 A363161 A183453
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Oct 02 2008
EXTENSIONS
Edited by R. J. Mathar, Oct 24 2008
More terms from Vladimir Joseph Stephan Orlovsky, Oct 25 2008
STATUS
approved