OFFSET
1,2
COMMENTS
Sequence's original Name was "First bisection of A135370."
The partial sums of this sequence give A081437. - Leo Tavares, Dec 26 2021
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
John Elias, Illustration: Belted Hexagrams
Leo Tavares, Illustration: Bounded Hexagons
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
a(n+1) = a(n) + 6*n + 2; see A016933.
G.f.: x*(1+6*x-x^2)/(1-x)^3. a(n) = A049450(n)-1. - R. J. Mathar, Oct 24 2008
a(-n) = A144391(n). - Michael Somos, Mar 27 2014
E.g.f.: (3*x^2 + 2*x -1)*exp(x) + 1. - G. C. Greubel, Jul 19 2017
From Leo Tavares, Dec 26 2021: (Start)
MAPLE
MATHEMATICA
Table[3*n^2 -n -1 , {n, 0, 50}] (* G. C. Greubel, Jul 19 2017 *)
PROG
(Magma) [3*n^2-n-1: n in [1..60]]; // Vincenzo Librandi, Jun 14 2011
(PARI) a(n)=3*n^2-n-1 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Oct 02 2008
EXTENSIONS
Edited by R. J. Mathar, Oct 24 2008
More terms from Vladimir Joseph Stephan Orlovsky, Oct 25 2008
STATUS
approved