login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A144388 Triangle T(n,k) = binomial(n, k) + ((-1)^(n + k))*n*binomial(n - 1, k), T(0,0) = 1, read by rows, 0 <= k <= n. 1
1, 0, 1, 3, 0, 1, -2, 9, 0, 1, 5, -8, 18, 0, 1, -4, 25, -20, 30, 0, 1, 7, -24, 75, -40, 45, 0, 1, -6, 49, -84, 175, -70, 63, 0, 1, 9, -48, 196, -224, 350, -112, 84, 0, 1, -8, 81, -216, 588, -504, 630, -168, 108, 0, 1, 11, -80, 405, -720, 1470, -1008, 1050, -240, 135, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

Table of n, a(n) for n=0..65.

FORMULA

T(n,k) = [x^k] ((x + 1)^n - n*(x - 1)^(n - 1)).

Sum_{k=0..n} T(n,k) = A151821(n-1), n >= 1.

EXAMPLE

Triangle begins:

   1;

   0,   1;

   3,   0,    1;

  -2,   9,    0,    1;

   5,  -8,   18,    0,    1;

  -4,  25,  -20,   30,    0,     1;

   7, -24,   75,  -40,   45,     0,    1;

  -6,  49,  -84,  175,  -70,    63,    0,    1;

   9, -48,  196, -224,  350,  -112,   84,    0,   1;

  -8,  81, -216,  588, -504,   630, -168,  108,   0, 1;

  11, -80,  405, -720, 1470, -1008, 1050, -240, 135, 0, 1;

  ...

MATHEMATICA

p[x_, n_] = (x + 1)^n - n*(x - 1)^(n - 1);

Table[CoefficientList[p[x, n], x], {n, 0, 10}] // Flatten

PROG

(Maxima) create_list(binomial(n, k) + ((-1)^(n + k))*n*binomial(n - 1, k), n , 0, 15, k, 0, n); /* Franck Maminirina Ramaharo, Jan 25 2019 */

CROSSREFS

Cf. A001787, A151821, A144389, A216973.

Sequence in context: A263313 A071818 A014513 * A133513 A101000 A035653

Adjacent sequences:  A144385 A144386 A144387 * A144389 A144390 A144391

KEYWORD

sign,easy,tabl

AUTHOR

Roger L. Bagula and Gary W. Adamson, Oct 01 2008

EXTENSIONS

Edited and offset corrected by Franck Maminirina Ramaharo, Jan 25 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 23 06:08 EDT 2019. Contains 322381 sequences. (Running on oeis4.)