OFFSET
0,2
COMMENTS
One of a family of sequences with palindromic generators.
For q a prime power, a(q-1) = q^3 + q^2 - q is the number of pairs of commuting nilpotent 2*2 matrices with coefficients in GF(q). (Proof: the zero matrix commutes with all q^2 nilpotent matrices, there are q^2-1 nonzero nilpotent matrices, all conjugate, each commuting with q nilpotent matrices.) - Mark Wildon, Jun 20 2017
Also the cyclomatic number (= circuit rank) of the n+1 X n+1 rook graph. - Eric W. Weisstein, Jun 20 2017
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Eric Weisstein's World of Mathematics, Circuit Rank
Eric Weisstein's World of Mathematics, Rook Graph
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
a(n) = n^3 + 4*n^2 + 4*n + 1.
G.f.: (1 +5*x -7*x^2 +x^3)/(1-x)^5.
a(0)=1, a(1)=10, a(2)=33, a(3)=76; for n>3, a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4). - Harvey P. Dale, Jan 24 2012
E.g.f.: (1 +9*x +7*x^2 +x^3)*exp(x). - G. C. Greubel, Aug 14 2019
MAPLE
a:=n->sum(n*k, k=0..n):seq(a(n)+sum(n*k, k=2..n), n=1..40); # Zerinvary Lajos, Jun 10 2008
a:=n->sum(-2+sum(2+sum(2, j=1..n), j=1..n), j=1..n):seq(a(n)/2, n=1..40); # Zerinvary Lajos, Dec 06 2008
MATHEMATICA
Table[n^3 + 4 n^2 + 4n + 1, {n, 0, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 10, 33, 76}, 40] (* Harvey P. Dale, Jan 24 2012 *)
CoefficientList[Series[(1 + 5 x - 7 x^2 + x^3)/(1 - x)^5, {x, 0, 60}], x] (* Vincenzo Librandi, Aug 08 2013 *)
PROG
(Magma) [n^3+4*n^2+4*n+1: n in [0..50]]; // Vincenzo Librandi, Aug 08 2013
(PARI) vector(40, n, n--; (n+1)^3+n*(n+1)) \\ G. C. Greubel, Aug 14 2019
(Sage) [(n+1)^3+n*(n+1) for n in (0..40)] # G. C. Greubel, Aug 14 2019
(GAP) List([0..40], n-> (n+1)^3+n*(n+1)); # G. C. Greubel, Aug 14 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Mar 21 2003
STATUS
approved