login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A135370 a(1)=1; then if n even a(n) = n + a(n-1), if n odd a(n) = 2*n + a(n-1). 5
1, 3, 9, 13, 23, 29, 43, 51, 69, 79, 101, 113, 139, 153, 183, 199, 233, 251, 289, 309, 351, 373, 419, 443, 493, 519, 573, 601, 659, 689, 751, 783, 849, 883, 953, 989, 1063, 1101, 1179, 1219, 1301, 1343, 1429, 1473, 1563, 1609, 1703, 1751, 1849 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Nonnegative numbers k such that 12*k + 13 is a square. - Bruno Berselli, Feb 16 2018

LINKS

Pierre CAMI, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).

FORMULA

a(n) ~ 0.75*n^2 (the sequence a(n)/n^2 has limit 3/4). - Stefan Steinerberger, Dec 10 2007

From R. J. Mathar, Oct 24 2008: (Start)

G.f.: x*(1 + 2*x + 4*x^2 - x^4)/((1 + x)^2*(1 - x)^3)).

a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).

a(n) = -7/8 + 3*n*(n+1)/4 - (-1)^n*(1 + 2*n)/8. (End)

a(n) = (lcm(f(n), f(n) + 3) - 1)/3, where f(n) = floor((3*n - 1)/2). - Gary Detlefs, May 14 2011

MATHEMATICA

a = {1}; For[n = 2, n < 100, n++, If[OddQ[n], AppendTo[a, 2*n + a[[ -1]]], AppendTo[a, n + a[[ -1]]]]]; a (* Stefan Steinerberger, Dec 10 2007 *)

PROG

(PARI) a(n)=lcm((3*n-1)\2, (3*n+5)\2)\3 \\ Charles R Greathouse IV, Dec 28 2011

CROSSREFS

Cf. A001651.

Sequence in context: A118570 A212244 A004617 * A206802 A285900 A022408

Adjacent sequences:  A135367 A135368 A135369 * A135371 A135372 A135373

KEYWORD

nonn,easy

AUTHOR

Pierre CAMI, Dec 09 2007

EXTENSIONS

More terms from Stefan Steinerberger, Dec 10 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 20 04:04 EDT 2020. Contains 337264 sequences. (Running on oeis4.)