login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140944
Triangle T(n,k) read by rows, the k-th term of the n-th differences of the Jacobsthal sequence A001045.
4
0, 1, 0, -1, 2, 0, 3, -2, 4, 0, -5, 6, -4, 8, 0, 11, -10, 12, -8, 16, 0, -21, 22, -20, 24, -16, 32, 0, 43, -42, 44, -40, 48, -32, 64, 0, -85, 86, -84, 88, -80, 96, -64, 128, 0, 171, -170, 172, -168, 176, -160, 192, -128, 256, 0, -341, 342, -340, 344, -336, 352, -320, 384, -256, 512, 0
OFFSET
0,5
COMMENTS
A variant of the triangle A140503, now including the diagonal.
Since the diagonal contains zeros, rows sums are those of A140503.
FORMULA
T(n, k) = T(n-1, k+1) - T(n-1, k). T(0, k) = A001045(k).
T(n, k) = (2^k - 2^n*(-1)^(n+k))/3, for n >= k >= 0. - Jianing Song, Aug 11 2022
From G. C. Greubel, Feb 18 2023: (Start)
T(n, n-1) = A000079(n).
T(2*n, n) = (-1)^(n+1)*A192382(n+1).
T(2*n, n-1) = (-1)^n*A246036(n-1).
T(2*n, n+1) = A083086(n).
T(3*n, n) = -A115489(n).
Sum_{k=0..n} T(n, k) = A052992(n)*[n>0] + 0*[n=0].
Sum_{k=0..n} (-1)^k*T(n, k) = A045883(n).
Sum_{k=0..n} 2^k*T(n, k) = A084175(n).
Sum_{k=0..n} (-2)^k*T(n, k) = (-1)^(n+1)*A109765(n).
Sum_{k=0..n} 3^k*T(n, k) = A091056(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = (-1)^(n+1)*A097038(n).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = (-1)^(n+1)*A138495(n). (End)
EXAMPLE
Triangle begins as:
0;
1, 0;
-1, 2, 0;
3, -2, 4, 0;
-5, 6, -4, 8, 0;
11, -10, 12, -8, 16, 0;
-21, 22, -20, 24, -16, 32, 0;
MAPLE
A001045:= n -> (2^n-(-1)^n)/3;
A140944:= proc(n, k) if n = 0 then A001045(k); else procname(n-1, k+1)-procname(n-1, k) ; fi; end:
seq(seq(A140944(n, k), k=0..n), n=0..10); # R. J. Mathar, Sep 07 2009
MATHEMATICA
T[0, 0]=0; T[1, 0]= T[0, 1]= 1; T[0, k_]:= T[0, k]= T[0, k-1] + 2*T[0, k-2]; T[n_, n_]=0; T[n_, k_]:= T[n, k] = T[n-1, k+1] - T[n-1, k]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* Jean-François Alcover, Dec 17 2014 *)
Table[2^k*(1-(-2)^(n-k))/3, {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 18 2023 *)
PROG
(PARI) T(n, k) = (2^k - 2^n*(-1)^(n+k))/3 \\ Jianing Song, Aug 11 2022
(Magma) [2^k*(1-(-2)^(n-k))/3: k in [0..n], n in [0..15]]; // G. C. Greubel, Feb 18 2023
(SageMath)
def A140944(n, k): return 2^k*(1 - (-2)^(n-k))/3
flatten([[A140944(n, k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Feb 18 2023
KEYWORD
sign,tabl,easy
AUTHOR
Paul Curtz, Jul 24 2008
EXTENSIONS
Edited and extended by R. J. Mathar, Sep 07 2009
STATUS
approved